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Abstract—Authorship identification of source code segment
identifies the author of a source code segment through supervised
learning. It has vast importance in plagiarism detection, digital
forensics, and several other law enforcement issues. However,
when multiple authors write a source code segment, typical
author identification methods no longer work. Here, an author
identification technique capable of predicting the authorship of
source code segments, even in the case of multiple authors,
has been proposed. This proposed technique uses a stacking
ensemble classifier built upon several deep neural networks,
random forests and support vector machine classifiers. It has been
shown that a single classification technique is no longer sufficient
for identifying the author group. Using a deep neural network-
based stacking ensemble method can significantly enhance the
accuracy. The performance of the proposed technique has been
compared with some existing methods, which only deal with
the source code segments written precisely by a single author.
Despite the more challenging task, our proposed technique has
achieved promising results evident by the identification accuracy
and f1-score, compared to the related works, which only deal
with code segments written by a single author. This work is
previously published at International Conference on Computer
and Information Technology (ICCIT) 2019.

Index Terms—Source Code Authorship Identification, Multiple
Author, Deep Neural Network, Random Forest, Support Vector
Machine, Stacking Ensemble

I. INTRODUCTION

Author identification of source code segment is an important
research topic in the field of software forensics. It has many
uses such as plagiarism detection, law enforcement, copyright
infringement etc. [8], [12]. Frantzeskou [7] mentioned that
source code author identification is useful against cyber attacks
in the form of viruses, trojan horses, logic bombs, fraud, credit
card cloning, and authorship disputes or proof of authorship
in court. There are specific patterns that developers subcon-
sciously reflect in their codes based on their particular coding
style while still following the guidelines, standards, rules, and
grammars of a language or framework [12]. These pieces of
information can be used to identify the author of the source
code segment.

In recent years, open-source software development has en-
tered a new era. Many big companies like Google, Microsoft,

and many others are maintaining their projects open source.
Alongside, small and mid-level projects are being written by
a group of authors. In these cases, trivial author identification
schemes no longer work. When someone contributes to an
open-source project, the writing style of the original author of
the source code segment is no longer unique, and it makes
the author identification task harder. Even worse case is when
several authors equally contribute a project. The writing style
is then the aggregation of all the authors. We aimed to solve
this problem and proposed an approach to identify the author
of a source code even when more than one author contributes
it. This paper has proposed an author identification technique
using a stacking ensemble method composed of several deep
neural networks(DNN), random forests, and support vector
machines(SVM).

A. Problem Definition

Authorship identification is the task of having some samples
of code for several programmers and determining the likeli-
hood of a new piece of code having been written by each
programmer [9]. As the name suggests, authorship identifi-
cation of source code segments written by multiple authors
identifies the author-label when the number of authors of the
source code segment is more than one. These contributions
can be of two types. The source code segment can be written
by mostly one author and has small contributions from several
other authors. Another is that a source code segment can be
directly written by a group of authors and have a roughly
equal contribution from each of them. Both of these happen
in open-source software and projects, which are very popular
nowadays.

B. Motivation

Authorship identification of source code segment has a vast
application area including plagiarism detection, authorship
dispute, software forensics, malicious code tracking, crimi-
nal prosecution, software intellectual property infringement,
corporate litigation, and software maintenance [8], [13], [16],
[19]–[21]. In the case of an authorship dispute, authorship



identification can be a solution. Given the source code segment
and the candidate owners, the likelihood of each candidate
being the author of the source code can be determined [12].
Again, Kothari [12] identified that author identification helps
to detect the author of the malicious code. Software companies
can also use an authorship identification system to keep track
of programs and modules for better maintenance [21]. Though
source code segments are much more restrictive and formal
than spoken or written language, they inhibit a significant
degree of flexibility [7]. According to Shevertalov [18], using
differences in the way programmers express their idea, their
programming style can be captured. This programming style,
in turn, can be used for author identification. Although a
large number of works have already been done regarding
author identification of source code segment, according to
Frantzeskou [8], the future of author identification of source
code segment is in collaborative projects to which we aimed
at.

The remaining sections are organized as follows. Section II
contains a briefing on background topics regarding this work.
Section III contains a summary of the related works. In
section IV, we discuss our author identification technique for
multiple authors. In section V, the experimental results of our
proposed technique are analyzed and compared with that of
some related works. Finally, in section VI, the conclusion is
stated with the possible future direction of this work.

II. BACKGROUND

A. Ensemble Method

By combining several methods, ensembling method helps
to improve the results of machine learning. An ensemble is
often more accurate than any of the single classifiers in the
ensemble. According to Maclin [14], an ensemble consists
of a set of individually trained classifiers whose predictions
are combined while classifying instances by the ensemble
method. This meta-algorithm combines several machine learn-
ing techniques into one predictive model. In our work, we
used a stacking ensemble in order to improve our prediction
performance.

B. Random Forests

Random forest is an ensemble learning method where each
classifier in the ensemble is a decision tree classifier. This
collection of classifiers is called a forest. During classification,
each decision tree gives its vote, and the result is based on the
majority of the votes.

III. RELATED WORKS

Numerous works are available on source code segment
author identification using a variety of features and classifiers.
However, very few of them use machine learning techniques
to identify the author of source code segments.

According to Ďuračı́k [6], there are several approaches to
identify the author of the source code segment. The first one
is text-based and uses plain text as an input. The second level
is token or metric-based.

A. Text Based Approaches

The first approach, which treats source code segment as
plain text, is a form of natural language processing. This
approach cannot make use of the programmatic structure of
the source code segment.

Frantzeskou et al. [8] proposed a technique called Source
Code Author Profiles(SCAP) for author identification. They
generated a byte-level n-gram author profile and compared
it with previously calculated author profiles. Burrows [4]
mentioned, the SCAP method truncates the author profiles
greater than the maximum profile length causing a bias towards
the truncated profiles.

Burrows et al. [3] proposed an approach using information
retrieval. They generated n-gram tokens from the source code
segments and indexed them in a search engine to query the
author of source code and return a ranking list of authors
which matched the n-gram token of the source code segment
with 67% accuracy.

B. Metric Based Approaches

Frantzeskou [8] pointed out that metric-based author identi-
fication is divided into two steps. The first part is extracting the
code metrics that represent the author’s style. The second part
uses those metrics to generate a model capable of labelling a
source code segment by corresponding author name. However,
a significant amount of time is required to gather all possible
metrics and examine to choose only the metrics responsible
for differing the authors’ style.

Lange and Spiros [13] assumed that the code metrics
histogram should vary from author to author as of their
coding style. An optimum set was selected using genetic
algorithms(GA) and used as input for the nearest neighbour
(NN) classifier from several source code metrics. This method
achieved 55% accuracy. According to Yang [20], some of
the features of this paper are unbounded, for example, the
indentation category.

Shevertalov et al. [18] proposed a technique based on GA.
The metrics are extracted from the source code segment to
make a histogram which is sampled using GA. The author
profile is produced using categorized histogram samples. For
files, they achieved 54% accuracy, and for projects, they
achieved 75% accuracy. Yang [20] mentioned that the details
of the final feature set are not mentioned in this paper. So, the
feature set is non-reproducible.

Bandara and Wijayarathna [1] used the deep Neural Net-
work for source code segment author identification. The
converted source code metrics they used to feed a neural
network are identical to that of Lange et al. [13]. Their
deep neural network consisted of three restricted Boltzmann
machines (RBM) layers and one output layer. They achieved
93% accuracy.

Zhang et al. [21] used SVM to identify the author of the
source code segment. They categorized their feature into four
groups, namely – programming layout feature, programming
style feature, programming structure feature and program-
ming logic feature. They used sequential minimal optimiza-



Fig. 1. Block diagram of the architecture of the stacking ensemble method

tion(SMO) as the classifier for SVM and achieved 98% and
80% accuracy for two different datasets.

IV. AUTHOR IDENTIFICATION OF SOURCE CODES
WRITTEN BY MULTIPLE AUTHORS

Our developed author identification approach consists of
four phases. Firstly, source code metrics are extracted from
the source code segments in the training set. These extracted
metrics are then converted to feature vectors.

Secondly, these feature vectors are fed to five individual
base classifiers and corresponding class labels to train the
author signatures to the base classifiers. In the case of open
source contribution, class-label means the owner of the source
code segment, and in the case of a group of authors, the
whole group is considered the class label. By author signature,
the coding style of a particular class label is meant. Caruana
[5] showed that, in general, for the classification problem,
random forest, DNN, decision tree, and SVM are the top four
algorithms. Hence, our chosen classifiers are DNN, random
forest with CART decision trees [2], random forest with C4.5
decision trees [10], C-SVM and ν-SVM.

Thirdly, each of the classifiers generates the posterior class
probability according to their predictions. These outputs are
called meta-features. Meta-features are used as the input for a
meta-classifier. Then the meta-classifier is trained based on the
meta-features and output. This approach is known as stacking-
ensemble. Another deep neural network is used as the meta-
classifier. Figure 1 shows a block diagram of the architecture
of the stacking ensemble method we have designed.

Finally, to identify the author of a new source code segment,
from the test set, the same metrics are extracted from the
test source code segments and converted to feature vectors.
These feature vectors are fed to the meta-classifier via the base
classifiers. Using the experience from the training, the meta-
classifier, along with the base classifiers, predicts the class
labels of the test source code segments. Figure 2 shows the
block diagram of the proposed approach for author identifica-
tion of source codes written by multiple authors.

Fig. 2. Block diagram of proposed author identification approach

In the following sub-sections, the building blocks of the
author identification approach are described.

A. Dataset

Some careful considerations are needed while choosing the
dataset. Data must be collected from a diverse population of
programmers. They should provide enough information about
the authors so that a clear distinction can be computed from
author to author and a valid comparison of their programming
style can be made. In addition, the dataset must be close to
real-world data as well as open for academic study [13].

In our study, we have generated our dataset based on
open-source codes from github.com. All the source codes
have a permissive license like MIT or BSD. The dataset
contains 6063 python source code segments from 8 authors/
author groups considered individual classes. Each source code
segment contains roughly 226 lines on average. Each author’s
source code segments are roughly split into a 2:1 ratio to make
the training and testing set.

Each class label consists of authors and contributors. By
author, we mean the true owner of the projects. This could be
a single author or a group of authors. By contributors, we mean
a group of people who are not the project-owner but willingly
contribute to the project by writing or editing a segment of
it. The number of authors and the number of contributors per
class label is listed in table I.

B. Metric Extraction

Previously, Shevertalov, Lange, Bandara, and Zhang [1],
[13], [18], [21] used source code metrics for author identifica-
tion. Lange selected the optimal set of code metrics using the
genetic algorithm from a set of probable code metrics. Bandara
used almost the same set of source code metrics. We have used
the same set of metrics for our author identification approach
only except the access modifier metric. The access modifier
feature is present only in a limited number of programming
languages and makes the whole system language-dependent.
Table II shows the set of metrics to be used and corresponding
descriptions.

After extracting the metrics, we have counted the number of
occurrences for each possible value for each of the metrics. For



example, for underscore metrics, we have counted the number
of words with no underscore, one underscore, two underscores
etc. These counts have been fed to the base classifiers.

C. Base Classifiers

There are a total of five base classifiers in our author
identification system. They are – DNN, random forest based
on CART, random forest based on C4.5, C-SVM and ν-SVM.
Each of the base classifiers is described below:

1) Deep Neural Network: The DNN model used as the base
classifier consists of 14 layers. Data are fed to the DNN as
batches of 32 entries. They are one input layer, followed by
eight fully connected layers, a dropout layer, a fully connected
layer, a dropout layer, a fully connected layer and finally, the
output layer.

In the fully connected layers, ReLU activation function
and in the output layer softmax activation function are used.
Categorical cross-entropy is chosen as the loss function. Adam
[11] optimizer is used to optimize the network.

2) Random Forest: The second base classifier is a random
forest with one hundred decision trees. Classification and
Regression Tree(CART) [2] algorithm is used to build the trees
which select the split node based on Gini impurity.

The third base classifier is another random forest with
one hundred decision trees. Decision trees in the third base
classifier are built with the C4.5 [10] algorithm. This algorithm
chooses the split node based on the entropy ratio.

3) Support Vector Machine: The fourth base classifier is
a C-support vector classifier. It is a support vector machine
where C is a penalty parameter for the error term.

The fifth base classifier is a ν-support vector classifier. It
is a support vector machine where ν is the upper bound of
training error and the lower bound of the number of support
vectors.

D. Meta Classifier

We have used another deep neural network as the meta-
classifier. The outputs of the base classifiers (meta-features)
are fed to the meta-classifier to learn the mapping from the
meta-features to the actual output.

TABLE I
NUMBER OF AUTHORS AND CONTRIBUTORS FOR EACH CLASS

Class Label Number of
Authors

Number of
Contributors

Azure 3 136

GoogleCloudPlatform 33 820

StackStorm 2 147

dimagi 2 101

enthought 9 224

fp7-ofelia 1 4

freenas 2 126

sympy 2 712

TABLE II
SET OF CODE METRICS AND DESCRIPTIONS

Metric Name Metric Description

Line Length This metric measures the number of characters in
one source code line.

Line Words This metric measures the number of words in one
source code line.

Comments
Frequency

This metric calculates the relative frequency of
line comment, block comment and optionally doc-
comment used by the programmers.

Identifiers
Length

This metric calculates the length of each identifier of
programs.

Inline
Space-Tab

This metric calculates the whitespaces that occur on
the interior areas of non-whitespace lines.

Trail
Space-Tab

This metric measures the whitespace and tab occur-
rence at the end of each non-whitespace line.

Indent
Space-Tab

This metric calculates the indentation whitespaces
used at the beginning of each non-whitespace line.

Underscores This metric measures the number of underscore
characters used in identifiers.

The neural network consists of 19 layers. They are one input
layer, followed by eight fully connected layers, a dropout layer,
two fully connected layers, a dropout layer, a fully connected
layer, a dropout layer, a fully connected layer, a dropout layer,
a fully connected layer, a dropout layer, and finally, the output
layer. The output from this output layer is the final output of
our author identification system for the source code segment
written by multiple authors.

The activation functions of the network are ReLU for
fully connected layers and softmax for the output layer. The
loss function used in the meta-classifier is categorical cross-
entropy. Stochastic Gradient Descent(SGD) is used as the
optimizer of the meta-classifier.

E. Training

We have implemented our author identification system for
source code segment written by multiple authors in multi-class
classification category. Here, a unique list of authors(or groups
of authors) of the source code segments in the training set is
treated as classes. The author identification system produces
confidence for each class of being the actual class of the given

Fig. 3. Steps for training the stacking ensemble system



TABLE III
PARAMETER VALUES OF THE CLASSIFIERS

Classifier Parameter Value

C-SVM C 1.0

ν-SVM ν 0.15

Base DNN learning rate 0.01

Adam optimizer
β1 0.9

β2 0.999

Meta DNN learning rate 0.001

SGD optimizer momentum 0

TABLE IV
ACCURACY OF THE BASE CLASSIFIERS

Classifier Name Accuracy

Deep Neural Network 82%

CART Based Random Forest 83%

Random Forest 83%

C-Support Vector Machine 79%

ν-Support Vector Machine 79%

source code. The actual author is expected to have the highest
confidence.

Roughly, 67% source code segments from each class formed
the training dataset, and the rest are used for testing. The
training set contains 4034 files, and the test set contains 2039
source code segments.

The training stage of our system is divided into three phases
– feature extraction from the source code segments, training
the base classifiers and training the meta-classifier. Figure 3
shows the steps followed in our author identification system
for source code segment written by multiple authors.

First of all, the source code metrics mentioned in table II
are extracted from source code segments. Then the extracted
metrics are converted to feature vectors as mentioned in
section IV-B. These feature vectors are fed to each of the
base classifiers as input.

The base classifiers run according to their learning algorithm
to learn to identify the writing style of each class. During
this training phase, several configurations of each of the
base classifiers, specially DNN, are used to determine which
configuration works best for the training set.

After completing each base model’s training, the posterior
probability for each input in the training set is generated. This
produced a 5 × |classes| sized feature vector for each input
feature vector where |classes| is the number of classes. These
feature vectors are known as meta-features. Meta features are
fed to the meta-classifier and the class labels through which
the meta-classifier learned to predict the actual class from the
meta-features.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

While implementing our author identification system for
source code segment written by multiple contributors, we have
used Keras as the framework for deep neural networks and
Scikit Learn [17] as the library for general-purpose machine
learning. For data pre-processing and visualization, we have
used NumPy and pandas [15] library. We have developed a
feature extractor that extracts the features mentioned in table II
from the source codes.

For C-SVM, the parameter C is a penalty for the error
term. For ν-SVM, the parameter ν is an upper bound to
the training error and lower bound to the number of support
vectors. During the experiment, we found that for both the
random forests, a hundred trees were sufficient to converge to
the highest accuracy. After numerous iterations, we reached a
decision that the set of values stated in table III classifies the
source code segments most accurately.

Accuracy and f1-score were used to evaluate the accuracy
of our method. Accuracy is the ratio between the number of
correctly identified samples and the number of total samples.
F1-score is the harmonic mean of precision and recall. Micro
averaging was used to compute the f1-score.

B. Results of The Base Classifiers

Table IV contains the accuracies for the five base models
of our stacking ensemble method.

C. Results of The Meta Classifier

After training the meta-classifier by the meta-features, we
have achieved 87% accuracy with f1-score 0.86. Identifying
the authorship of source codes is more difficult when the
number of authors is more than one, as the writing style of
the source code is then inconsistent from segment to segment.
Table V shows a comparison between the type of features,
language independence, the capability of handling multiple
authorship, the number of classes and the total number of
source code segments used in training and testing. From that
table, we can see that even after dealing with source code
segments written by multiple authors, our method has achieved
an accuracy that is pretty close to that of the methods that
deal with single authors. Our chosen set of metrics is compact
and is still able to achieve satisfactory accuracy. Alongside,
several works suffer from choosing a set of metrics that are
not language-independent. So, the main contribution of this
work is the identification of multiple authors using a language-
independent set of metrics.

VI. CONCLUSION

Here, we have proposed a new approach for identifying
the author of the source code segment where the number of
authors of the source code segment is more than one. The main
challenge of this work is to select the base estimators from
a large number of possible combinations. Again, as several
classifiers need to be trained, each classifier needs to be fine-
tuned individually to produce an excellent final result. On the



TABLE V
COMPARISON AMONG THE METHODS FOR SOURCE CODE SEGMENT AUTHOR IDENTIFICATION
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Information retrieval
approach [3]

Character level
n-gram

Yes No 100 1640 67%

Code metric histogram [13] 7 code metrics Yes No 20 4068 55%

Genetic algorithm [18] 4 code metrics Yes No 20 N\A 75%

Deep neural network [1] 9 code metrics No No 10, 10, 8, 5, 9 1644, 780, 475,
131, 520

93%, 93%, 93%,
78%, 89%

Support vector machine [21] 46 code metrics No No 8, 53 8000, 502 98%, 80%

Stacking ensemble method 8 code metrics Yes Yes 8 (group of authors) 6063 87%

other hand, identifying the authorship of source code segments
is more complicated when the number of authors is more than
one.

We have developed a stacking ensemble classifier consist-
ing of five base classifiers and a meta-classifier that uses a
relatively small set of code metrics that are relatively easy to
compute and language-independent.

Even though our stacking ensemble method achieved sat-
isfactory accuracy, this still can be improved. Even though
our code metrics are language-independent, we only tested
with python source code segments. Future works may test on
other languages and check how the set of metrics works for
other languages. Other sets of metrics can also be examined
to see how they contribute to the writing style of source code
segments.
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