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Abstract. GANS have been used for a variety of unconditional and con-
ditional generation tasks; while unconditional generation involves learn-
ing and sampling from P (X), conditional generation can be described
as sampling from P (X|f(X) = 1), where f is a binary indicator func-
tion. Most commonly studied conditional generation are class-conditional
generation wherein f is a binary class-membership function. While class-
conditional generation can be directly integrated into the training pro-
cess, integrating more sophisticated indicator functions within the train-
ing is not as straightforward. In this work1 , we consider the task of sam-
pling from P (X) such that the silhouette of (the subject of) X matches
the silhouette of (the subject of) a given image; that is, we not only
specify what to generate, but we also control where to put it: more gen-
erally, we allow a mask (this is actually another image) to control the
silhouette of the object to be generated. The mask is itself the result
of a segmentation system applied to a user-provided image. To achieve
this, we use pre-trained BigGAN and SOTA segmentation models (e.g.
DeepLabV3 and FCN) as follows: we first sample a random latent vec-
tor z from the Gaussian Prior of BigGAN and then iteratively modify
the latent vector until the silhouettes of X = G(z) and the reference
image match. While the BigGAN is a class-conditional generative model
trained on the 1000 classes of ImageNet, the segmentation models are
trained on the 20 classes of the PASCAL VOC dataset; we choose the
”Dog” and the ”Cat” classes to demonstrate our controlled generation
model.

Keywords: Generative model · Image Segmentation · Computational
Creativity Tools

1 Introduction

GANS have been used for a variety of unconditional and conditional generation
tasks; while unconditional generation involves learning and sampling from P (X),

1 This work was originally completed as a course project in the Deep Learning course,
and has subsequently been revised and prepared for a conference submission (cur-
rently under review)
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conditional generation can be described as sampling from P (X|f(X) = 1), where
f is a binary indicator function. Most commonly studied conditional generation
are class-conditional generation wherein f is a binary class-membership function.
While class-conditional generation can be directly integrated into the training
process, integrating more sophisticated indicator functions within the training
is not as straightforward. Specifically, in this work, we aim learn to replace the
silhouette of a subject in an image (in our examples, an animal) with a different
subject (e.g. a different animal) that still fits the exact same silhouette. Some
generative models conditionally generate images by transforming vectors that lie
in a large latent space. BigGAN, for example, has been trained to conditionally
generate realistic images from any of the 1000 different categories of Imagenet,
including various breeds of dogs and cats. While it is straightforward to sample
from any of these categories; attributes like shape, size and posture cannot be
directly manipulated to match our preference. These visible attributes are influ-
enced by the choice of latent vector, but the nature of that influence is neither
explicit, nor easily invertible, i.e. it is not clear how to choose a latent vector in
order to achieve a desired visual attribute.

We introduce an iterative optimization-based approach to allow control over
the silhouette of the image subject. We use a publicly-available pre-trained seg-
mentation model to obtain a proxy for the silhouettes and the pre-trained Big-
GAN generator to conditionally generate our desired subject. We compute the
differences in both silhouettes and optimize to iteratively produce images that
can match silhouette of the given subject. This is done by (locally) optimizing
over the latent-space of GAN until the euclidean distance between the segmenta-
tion maps is minimized. Figure 1 shows an example of our final system’s output
as it iterates to find an image whose silhouette matches that of the source image
(8a).

1.1 Background

Our system depends crucially on two types of models: a GAN-based generator,
and segmentation model. We discuss each of these.

Image generation. Generative adversarial networks (GANS) [6] use a neural
network (G) to transform a latent vector z sampled from a prior distribution p(z)
to produce an output image X = G(z). The generator network further comprises
of intermediary layersG1..Gl, where the first layer takes as input the latent vector
to produce features tensors. The initial features are used by the next layer to
produce higher abstraction of these features yi = G(yi−1). Lastly, The final
layer is responsible for producing an output image X = Gl(yl−1). Large scale
class-conditional image synthesis [1] demonstrated that GANS could improve
sample variety and fidelity from scaling up the number of parameters and batch
size. BigGAN employs a shared class embedding c that is linearly projected to
every layer and uses skip connections from the noise vector z to multiple layers
of generator yi = Gi(yi−1, z).This allows the latent space to directly influence
features at different levels of hierarchy. This is done by splicing z into one chunk
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Fig. 1: Image (8a) is a provided source image. In this case, the source image hap-
pens to be itself a generated image (i.e. none of these images are photographs).
Image (8b) shows a class-conditionally generated dog image for a random initial
latent vector z, and (8c-8e) show the progression of images as we optimize z
through the latent space (described in Section 3) to arrive at an image (8e) of a
different dog from the original source, but whose silhouette matches that of the
source image. These images were found using the ensemble model as described
in Section 4. Images (8f)-(8j) show the corresponding segmentation maps.

per resolution and concatenating it with the shared class embedding c. They
truncate the latent prior N(0, I) during inference to improve sample quality.
Although sampling from a truncated prior distribution during inference improves
individual sample quality it also introduces undesirable saturation artifacts. In
our framework, BigGAN provides a suitable generator for because of its ability
to generate diverse high resolution samples including multiple species and breeds
of various animals (useful for our example purposes). The architecture details of
BigGAN are described in figure 2.

Image Segmentation. An important part of our framework is realised using Se-
mantic segmentation. It can be explained by extending the idea of classification
to the pixel level where an image is partitioned—or more accurately, the set of
pixels of an image is partitioned—such that each pixel in a partition belongs
the same class. Since the class of every pixel in the image is being predicted,
this task is commonly referred as dense prediction. Earlier approaches have re-
lied on primitive thresholding, clustering, edge-detection and graph-based meth-
ods for segmentation. In contrast, a majority of the work [18] [2] for segmenta-
tion in deep learning builds on convolution neural networks (or CCNs) which
helps by learning increasingly abstract feature representations. However, this
approach introduces challenges like reduced resolution which may impede dense
prediction tasks, where detailed spatial information is desired. SOTA models
like Deeplabv3 [3]use atrous convolution (also known as dilated convolutions)
figure 3 to overcome this problem. For example, a kernel of size K × K with



4 Authors Suppressed Due to Excessive Length

(a) BigGAN 512 generator (b) BigGAN 256 generator

Fig. 2: BigGAN generators architecture

a dilation rate of N will cover (N − 1) ∗ K × (N − 1) ∗ K pixels for an ex-
pansion of (N − 1) × (N − 1). This allows to control the resolution of features
while preserving the number of parameters.The pre-trained semantic segmen-
tation model from deeplabv3 provides segmentation images of 20 classes in the
PASCAL dataset including dogs and cats. This provides us the required segment
masks to facilitate controlled generation from BigGAN.

Fig. 3: Cascaded modules without and with atrous convolution ( [3])
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2 Related work

GAN frameworks [6],like BigGAN [1] and StyleGAN [10,11] are powerful image
synthesizers and have achieved impressive results in generation of variety of
high quality images. Various improvements have been made to the original GAN
model over the years, primarily to obtain higher quality images and more stable
training, but most of those improved models still provide little direct control over
the generated images other than selecting image classes or adjusting StyleGAN’s
style vector.

In studies like [5,9,15,16,20] there were attempts made to add control over the
generated output images by focusing on supervised learning of latent directions.
A few studies like [13, 17, 19] also provided useful control over spatial layout of
the synthesized output images.

Our work focuses on exploring changes in the manifolds corresponding to
the spatially localized region within the masked area of the image. We hope
to discover smoothly varying sequences of latent vectors that lead to smooth
transition of the generated “new subject” image (e.g. the new breed of dog) to
exactly fit the mask corresponding to that of the target image (e.g. the silhouette
of the dog in the provided source image).

A study by Yang et al [21] have explored similar results by applying a rect-
angular mask over features of the image like eye or mouth regions and learning a
function that can be applied over the latent vector that allowed targeted control
over the appearance of feature within the rectangular mask. Another study by
Srinivas et al [8] shows that we can identify interpretable control over GAN gen-
erated image’s pose, shape, facial and landscape attributes by applying principal
component analysis (PCA) in latent space for StyleGAN, and feature space for
BigGAN. Shen et al [16] propose a framework called InterFaceGAN, to identify
the semantics encoded in the latent space of well-trained face synthesis models
and then utilize them for semantic face editing. A paper by Nguyen-Phuo et
al [14] proposes a novel method for the task of unsupervised learning of 3D rep-
resentations from natural images. Their method enables direct manipulation of
view, shape and appearance in generative image models. To generate new views
of the same scene, transformations are applied to the learnt 3D features, and the
results are visualised using a neural renderer that was jointly trained. Huang
et al [7] propose a framework that decomposes the latent space of images into
content space and style space and recombines the style spaces of different images
to achieve style transfer.

Our attempt is to experiment with careful tuning of latent vector space in
order to gain more control over the targeted portions of the generated image.
We achieve this by changing the latent vector to fit the targeted image in the
mask of the input image. An another study [12] proposes a solution to do face
swap by combining neural networks with simple pre- and post-processing steps.
We achieved subject-swapping for animals by pre-processing the input and by
defining a loss function which takes input from both an image segmentation
model and BigGAN model.
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3 Model

A conditional GAN is a latent generative model that maps a point z in the latent
space Z to an image G(z) that follows a lifelike distribution R.The likelihood of
G(z) ∼ R is influenced by the selection of z. Empirical evidence [4, 16] suggests
that this mapping from z → G(z) is not always smooth and there are hidden
but expressive transformations that remain to be explored. We propose a mask-
guided image editing framework to swap a given subject in a given image (e.g. a
dog) with another subject (e.g. a different dog!) using manifold transformation
exploration. Our optimization framework requires four inputs: a source image
Xs, a mask M(Xs) (of the subject of interest) in the source image, a generated
image Xg and its corresponding subject mask M(Xg). Note that the user only
provides a single source image Xs; the other image Xg is generated, and the
masks of both images are obtained by the resnet-based semantic segmentation
models. The framework F (Xs, zg) ,where Xs being the target image and zg
being the input latent vector for image to be generated optimises z to discover a
meaningful transformation that can overlap the subject in the generated image
Xg with that in Xs .The source image Xs can also come from another class of the
generator. The optimization based exploration progresses using L2 loss between
the source image segmentation map M(Xs) and generated image segmentation
map M(Xg).

Our optimization framework is described in Figure 4. The segmentation
model is used to get the segmentation maps for both the target image and
the BigGAN generated image . Mean squared error is computed between the
segmentation maps of the target image and the BigGAN generated image. The
computed loss is then back propagated through the model to the input latent
vector z of the generator. This vector, in turn, is optimised to minimize the MSE
between these maps, and thus incrementally generate images that can fit within
the segmentation map of the target image. We used the BigGAN generator due
to both availability of pretrained parameters2 and its ability to generate diverse
samples.

4 Experimental Results

We initially tested this framework by performing small transformations, such
as translations and rotation on a generated image, where we had access to the
latent vector zs used to generate the source image. This allows to assess model’s
ability to find the transformed vector from a good initialization point.This can
be done by using the same BigGAN generated image as source and target image,
where a known and controlled transformation has been applied to the source in
order to generate the target. Figure 5 shows the results of this test.

The experiment in Appendix C (Figure 12) shows that the segmentation
model struggles to segment the generated image when it is undergoing transi-

2 https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=
deepmind

https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=deepmind
https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=deepmind
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Fig. 4: Optimizing in Z: The top “row” of this figure stays fixed during opti-
mization: given input image Xs is passed through a segmentation model to get a
segmentation map, resulting in a mask M(Xs). This is the source mask. In the
bottom “row”, the latent variable z is optimized using the L2 loss between the
target map M(Xs) and segmentation map M(Xg) of the generated image Xg.
The generated image, X(g), is a itself generated based on the latent variable,
i.e. Xg = G(z). This allows us to incrementally update z until we are able to
generate an image G(z) such that its mask is very close to that of the source
image, i.e. M(G(z)) ≈M(Xs).

tions. The segmentation part of the model is regularised by adding another, sec-
ond, segmentation model into the pipeline as shown in Figure 7. FCN ResNet101
is selected for supplementation because it has a global pixel-wise accuracy of
91.9% on COCO val2017 dataset and also shares the same architectural back-
bone as DeepLabv3 .

The average segmentation map is generated by computing the weighted av-
erage of the two maps (obtained by DeeplabV3 and FCN Resnet101). MSE loss
is computed on the average maps of both the generated and target image. The
model can benefit from averaging due to partial independent errors of the in-
dividual models. Appendix (B) contains further details about implementation.
Another ensemble method which was also implemented but did not produce
desirable results is discussed in Appendix A.

5 Discussion

We observed that when the generator did not yield a high fidelity initial image
the model finds it difficult to converge and find a generation that can fit the
target map. Also, we found that certain classes used by the generator seemed
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Fig. 5: Transformed generated image used as target. The target image is shown
in 8a,The generated images are results from Epoch1,5,10,20 respectively.The
rotation target is rotated 10 degrees to the left and the translation target is
translated 10 pixels to the right
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to allow better convergence than others, this may be attributed to the biases
of the BigGAN generator. We experimented with both the original proposed
pipeline and the extended ensemble version.The results shown in figure 8 are
generated using a single segmentation model while computing MSE on the target
and generated segmentation maps. The results in figure are generated using an
ensemble of segmentation modules as illustrated in Figure 1.

Class Experiments The multi-task nature of the models used in the pipeline
allows for generation of variety of animals. The segmentation models used are
capable of segmenting birds and cats. Figure 6 demonstrate the ability of the
model to fit different birds and cats. We can see in this example that that while
the cat image had a very well-matched silhouette, the bird silhouette did not
quite converge.

Fig. 6: Different classes, Figures (b)-(e) shows the the generated bird images
with their corresponding segmentation maps from Figure (g)-(j). Figures (l)-(o)
shows generated cat images with their corresponding segmentation maps from
Figure (q)-(t).
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Fig. 7: Ensemble of two segmentation models

Fig. 8: Shifting Dog Face, target image is shown in (a), generated images are
shown in (b), (c), (d) and their corresponding segmentation maps in (f), (g),
(h). The face of the dog shifts from the right-side towards left-side .
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6 Conclusion

In this paper, we were able to demonstrate that two independently trained mod-
ules when stacked together can achieve the task of subject swapping. Initial
experiments showed poor segmentation of images undergoing transition, so the
segmentation part of the model was regularised by adding an additional segmen-
tation model in an ensemble fashion. Future work may include using a discrim-
inator to further regularize the model to provide more gradient feedback.
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A Alternative Ensemble methods

The segmentation models used share similar architecture(Resnet101) and train-
ing dataset. Although the range of the logits vary from network to network, we
could not find any evidence that computing an average across the logits pro-
duced by different segmentation modules should not necessarily produce good
results. Therefore, we tried averaging the logits and then applying soft-max on
the channel dimension before computing BCE Loss. The results of the average
segmentation are shown in (Figure 9). We also tried a method where we average
the losses. as illustrated in (Figure 10). This method did not work as well as the
method illustrated in (Figure 7), The reason for this deviancy can be the BCE
loss that we used while implementing this method.

B Implementation Details

We use a pytorch ported version3 of the original model(As illustrated in Fig-
ure 7). The target and the generated image are used as inputs to two sep-
arate segmentation models. The pretrained segmentation models were taken
from pytorch hub45 . We use Adam optimzer with a learning rate of 1e − 1
and beta values of 0.5 - 0.99. The model is run for a maximum of 25 epochs.
The segmentation models expects the RGB channel to have the corresponding
Mean(µ) = [0.485, 0.456, 0.406] and Variance (σ) = [0.229, 0.224, 0.225] values,
This is done explicitly for every generated image. Mean squared error is used
for computing the loss over the ”Dog” channel of the two segmentation maps.
Weighted average with the ratio 0.6 : 0.4 is used for the segmentation models
because the DeepLabv3 segmentation model works better than FCN resnet101
segmentation model.

3 https://github.com/ivclab/BIGGAN-Generator-Pretrained-Pytorch
4 https://pytorch.org/hub/pytorch vision fcn resnet101/
5 https://pytorch.org/hub/pytorch vision deeplabv3 resnet101/

https://doi.org/10.3389/frobt.2015.00036
http://dx.doi.org/10.3389/frobt.2015.00036
http://dx.doi.org/10.3389/frobt.2015.00036
https://doi.org/10.1109/CVPR.2017.141
https://github.com/ivclab/BIGGAN-Generator-Pretrained-Pytorch
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https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/


Controlling BigGAN Image Generation with a Segmentation Network 13

Fig. 9: Average over logits of two segmentation models, a) Deeplabv3 b) FCN
ResNet101
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Fig. 10: Average losses

Fig. 11: Background change The model changes the background owing to inclu-
sion of background channel in loss computation
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C Loss and Channel Experiments

During training, we tried losses including cross-entropy, binary cross-entropy, soft
cross-entropy, and mean squared error. The results of the segmentation models
used contains 21 channels, where each channel outputs un-normalised probability
values for pixels belonging to a particular class. Channel 0 is the “Background
class”. While performing the transformation experiments shown in Figure 5, we
used binary cross-entropy loss. The channels used for computing the loss were
the background channel and the “dog” channel. Figure 11 illustrates how the
model tries to fit the background while reducing the loss. We found excluding
the background channel and computing the mean squared error only on ‘dog’
channel works best.

Fig. 12: Ensemble Segmentation. Image (j) shows poor segmentation by
DeeplabV3 and Image (o) shows poor segmentation by FCN.
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