

IOMapper: The Integration of Generalized Signal

Control Mapping With the Godot Game Engine

Logan Murphy

Department of Computer Science

Dalhousie University

Halifax, Canada

lmurph@dal.ca

Joseph Malloch

Department of Computer Science

Dalhousie University

Halifax, Canada

jmalloch@dal.ca

Abstract—We present a novel software solution for

dynamic control of properties in a simulated environment

using custom signals and devices, enabling thorough creative

control for contemporary media synthesis. The software tool

is IOMapper, a plugin for the popular open-source Godot1

game engine, serving as an implementation of the libmapper

software library [1]. The portable nature of libmapper’s

network signals offers a basis upon which to easily integrate

experimental input devices with Godot, creating a solid

foundation for both formal study as well as the creation of art.

IOMapper is a working tool, available publicly at

https://github.com/lemurph/IOMapper.

Keywords—art, experimental input devices, Godot game

engine, media synthesis, software tool

I. INTRODUCTION

 The need for a tool to ease the process of connecting

novel human computer interaction (HCI) devices has been

shown to be fulfilled by libmapper [1]. Among those who

create experimental HCI devices are artists who are

interested in a device specific to their creative needs. There

is a vast community of live performers who incorporate

visual elements in their musical and artistic performances.

Many of these individuals cannot properly demonstrate

their vision with a pre-existing controller and instead need

a bespoke way to map signal data to the properties of the

visuals. In this work we discuss the circumstances

necessitating the implementation of libmapper into the

Godot game engine, as well as the extensive portability that

this implementation provides to those requiring a simple

tool to quickly create an environment for testing

experimental HCI devices.

II. DEVELOPMENT PROCESS

 The decision to use the Godot game engine over another

free engine such as Unity stems from two notable

advantages that Godot has. The first advantage is the open-

source nature of Godot. Since Godot is open source, this

means that all of its features are free. Godot also

encourages extension of the engine via C++, making the

integration of libmapper uncomplicated. The second

attraction of Godot comes from its ease of use. Godot lacks

some features that Unity may have, but this means that

Godot is far less complex. We expect a reasonable number

of those using IOMapper to have limited experience with

game engines, and Godot’s uncomplicated design enables

a great environment to quickly begin creating a project.

Beginning with no experience using a game

engine, the development process began as an exploration

into the capabilities of Godot. By experimenting and

delving into the various example projects made available

by users of Godot, an understanding of the user experience

began to form. This understanding is fundamental in the

development process, as the module would fail to be useful

unless it matches the needs and expectations of Godot

users. The official Godot documentation2 was a valuable

resource in learning how to use and connect the various

systems available, as well as how a library such as

libmapper may be bound to Godot’s scripting language,

GDScript.

 We then encountered a slight impasse in trying to

decide on an implementation of libmapper within Godot.

When deciding between using a Godot extension called

GDNative which would eliminate the need for recompiling

Godot for every iteration of IOMapper, or alternatively

developing a full module for the engine, we needed the

expertise of Michal Seta. Michal had previous experience

developing an Open Sound Control module for the Godot

engine called gdosc4, which was later ported to GDNative

by a new maintainer. Meeting with Michal gave us the

insight necessary to conclude that a full module would be

almost indisputably superior to the GDNative approach

based on its advantages with GDScript documentation

integration and the advantageous community support that

surrounded module development over the GDNative

approach.

III. STRUCTURE OF THE MODULE

 IOMapper follows a simple two-class structure as

follows; the main IOMapper class which is instanced in

GDScript as the libmapper device, and the signal class

which can be instanced to store signals as GDScript

variables and connected to other signals on the network.

The signals can then be accessed for their data or used to

transmit data to connected signals. There are a host of

accessor and mutator methods available that can be called

to alter or access the various properties or data of a signal.

An example of a Godot script declaring a device with a

signal can be seen in fig. 1.

Funding provided by the NSERC USRA

 1 https://godotengine.org/

 2 https://docs.godotengine.org/en/stable/index.html
 3 http://libmapper.github.io/

 4 https://github.com/djiamnot/gdosc

Fig. 1, A code snippet showcasing the creation of a device and adding a

signal in Godot’s GDScript using IOMapper.

 The methods made available by IOMapper are more

than sufficient to enable the use of Godot with any other

libmapper-ready environment such as Max, Pure Data,

SuperCollider, Processing and the Arduino or ESP32.

Thanks to libmapper’s language support, the ecosystem

also enables users of C, C++, C#, Python and Java, as well

as tools utilizing those languages (e.g Google’s MediaPipe)

a way to easily connect with Godot via IOMapper.

IV. MOTIVATION AND USAGE

The mapping phase of interaction design for multimedia
is often a complex task, only increasing in complexity with
additional sensors [2]. The earliest works of HCI device
design attempted to ease this complexity by focusing on
equating the physical properties of different input devices to
minimize the programming effort in substituting one device
for another [3]. However, this approach becomes
problematic for those interested in creating new HCI
devices with idiosyncratic control methods. It is
unreasonable to assume any person in need of a tool such as
libmapper would be willing or able to learn how to use a
new piece of software, then also implement that software
into the tool they intend to use with the device. This hurdle
necessitates the streamlined implementation of libmapper
into various tools that creators are already familiar with,
further expanding the libmapper ecosystem [1]. Since game
engines are so versatile in use by nature, the implementation
of libmapper into Godot provides multiple benefits for users
of both tools.

First, as discussed in the introduction, artists who wish
to incorporate an aspect of visual performance with their
musical creations may wish to use a custom device to
control the properties of the visuals and sound. This process
would involve creating custom bindings from the tool to the
Godot scripts, which is a tedious task that requires both time
and sufficient programming knowledge. IOMapper eases
this process of integrating with Godot by allowing the
definition of custom signals that can transmit sensor values
and the ability to assign a mapping expression to process the
data, which incoming signals can then receive. The signal
values that are received can be used to manipulate the
properties of any Godot scene in any way the user chooses.

The second notable use case for IOMapper is as a
research tool in the creation and visual testing of
experimental HCI devices. The iterative nature of designing
an interactive device may involve having to rewrite a large
quantity of code for every iteration, possibly consuming
valuable time. In this case, IOMapper uses libmapper to
provide a way for researchers and HCI device creators to
quickly define and map sensor values wirelessly over the
local network, eliminating the need for a wired connection.

The incorporation of this portability into a game engine
provides a fully customizable environment which can be
used to experiment with the control of a custom HCI device.
IOMapper can serve as a valuable tool to a researcher by
creating an environment for formal user studies as well as
exercise the creative applications of a custom device.

V. FUTURE PLANS

 In its current state, IOMapper has had limited feedback

from users, especially those who are familiar with Godot.

The next steps for IOMapper include gathering feedback

from users of the module on features that may need to be

implemented or tweaked. We are looking to gather

feedback from the users on Godot’s various communities

such as their forums, sub-reddit and Discord group, all of

which are active and supportive. As the module is focused

on being a user-friendly tool, there is documentation

available in the repository, as well as a wealth of

documentation available for libmapper on its website and

in its repository3. While IOMapper has thorough

documentation including instructions and examples, this is

also an area that is lacking in user feedback and refinement.

Additionally, there is a visual scripting language

available for Godot called VisualScipt and it may be

valuable to add IOMapper integration for that as well.

The next priority for IOMapper is porting it to

other engines, starting with Unity. We are aware that those

who are using game engines in their work are likely using

Unity, and we would like to provide the flexibility of using

IOMapper with whichever engine a user sees fit.

ACKNOWLEDGMENT

 I thank Joseph Malloch for the supervision of the

IOMapper project, as well as those responsible for creating

and maintaining libmapper. I thank Matt Peachey for

numerous helpful discussions, feedback, and contributions

to IOMapper. I thank Michal Seta for an informed basis

upon which to begin the development of IOMapper.

REFERENCES

[1] J. Malloch, S. Sinclair, and M. M. Wanderley,“libmapper: (A
Library for Connecting Things),” in CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, p.3087–3090,
ACM, New York, NY, USA, 2013, ISBN9781450319522,
doi:10.1145/2468356.2479617.

[2] J. Malloch, S. Sinclair, and M. M. Wanderley, “Generalized multi-
instance control mapping for interactive media systems”, IEEE
Multimedia, p.39-50, January 2018, doi:
10.1109/MMUL.2018.112140028

[3] R. J. K. Jacob, L. E. Sibert, D. C. McFarlane, and M. P. Mullen
“Integrality and separability of input devices,” in ACM Transitions
on Computer-Human Interaction, Volume 1, Issue 1, p.3-26, March
1994, doi:10.1145/174630.174631

