
IoT Device Fingerprinting on Commodity Switches
Pulkit Garg

Department of Computer Science
Dalhousie University
pulkit.garg@dal.ca

Miguel Neves
Department of Computer Science

Dalhousie University
mg478789@dal.ca

Israat Haque
Department of Computer Science

Dalhousie University
is179864@dal.ca

Abstract—The number of IoT devices and the concept of smart
homes have become prevalent these days. This paper presents
FingerP4, a stateful solution that uses P4 programming language
to uniquely identify IoT devices inside a smart home entirely
in a BMv2 switch. FingerP4 uses packet lengths, the direction
of flow, and the state of the packet defined by a Finite State
Machine (FSM) to identify the devices. In our initial experiments,
FingerP4 was successfully able to identify events from 7 different
IoT devices entirely in the data plane.

I. INTRODUCTION

With the advancement of technology in the 21st century,
computers have become miniature and powerful in computa-
tion. Internet of Things (IoT) devices are a result of this rapid
evolution of computers. As the name suggests, IoT devices are
hardware objects embedded with sensors and actuators that are
programmable and transfer data over the network [1]. A group
of these devices interconnected through the Internet inside
a home for various purposes such as temperature, lighting,
accessing television, security controls, etc., forms a Smart
Home [2]. Currently, there are 258.54 million active smart
homes globally, which is expected to reach up to 482.8 million
by 2025 [3].

Unfortunately, with this rising use of IoT devices and smart
homes, several privacy and security concerns have emerged.
Various solutions have been proposed to protect the home
IoT devices. For example, Trimananda et al. proposed an
intelligent system, PingPong, to uniquely identify (fingerprint)
a home IoT device based on packet exchanges between the
home device, the cloud, and the smartphone even when traffic
is encrypted [4]. PingPong can extract unique signatures from
a dataset containing device events such as ON/OFF. However,
PingPong can suffer from performance degradation at scale
due to the limited capacity of the server that processes the
IoT traffic.

In recent years, developments in technology have also led
to the invention of programmable networks. For instance,
Software-defined Networking (SDN) [9] is a new networking
paradigm that makes the network easy to configure and man-
age by separating the network intelligence (control plane) from
data forwarding elements (data plane) to make the network
control programmable [10][11]. The control plane manages
how packets are forwarded, while the data plane is responsible
for sending packets from the source to the destination [12].

The second generation of SDN takes network programma-
bility one step ahead by directly programming data plane

Fig. 1. Fingerprinting Design

switches using a new programming language called P4 [5].
Such programmability can allow a switch to process home IoT
traffic at line rate (Tbps) without needing a server (middlebox).
Also, switches naturally sit between the home IoT devices and
the cloud servers.

In this poster, we propose a new fingerprinting system,
FingerP4, built on PingPong to identify devices’ signatures
entirely on the data plane. We implement the proposed system
in the Mininet emulator, where we program software switch
BMv2 using P4 [5] to demonstrate the feasibility of FingerP4.

In a traditional SDN network, packets from the switch must
be sent back and forth to the controller which leads to wastage
of time and resources. Hence by transferring some of the
features to the switch, we not only give more freedom to the
programmer, but also are more efficient while following the
principles of SDN [13].

Secondly, the invention of Programmable Independent
Switch Architecture (PISA) led to development of high speed
forwarding protocol independent switches, with forwarding
speeds up to 6.4 Tb/s, which do not understand any pro-
tocols unless programmed [14]. To take advantage of these
speeds, we utilize the processing capabilities of the switch by
identifying devices and forwarding packets in the data plane.
Additionally, our solution could be used by Internet Service
Providers (ISP) to make their network secure by fingerprinting
the IoT devices in their network and help monitor if an
unidentified malicious device tries to connect to the network.



Fig. 2. State Machine Function

The knowledge of all the devices connected to the network
could help in mitigating security threats.

Related Work. Bianchi et al. use eXtended Finite State
Machines (XFSM) and P4 to present a platform agnostic
solution by programming the switches with stateful packet
processing capabilities [13]. Additionally, there have been
efforts to identify the Operating System of the devices in the
data plane using P4 [6] and identifying events in IoT devices
uniquely in the control plane using Java [4]. We identified
events in an IoT device entirely in the data plane using P4
and the concepts of Finite State Machine (FSM).

II. IDENTIFYING DEVICES IN THE DATA PLANE

A. Overview

This project takes up the concepts of PingPong and applies
it to a stateful solution in P4 programming language to identify
devices inside a BMv2 switch. For the switch to identify
signatures from a network traffic, the signatures have to be
stored in the switch. Initially signature text files for each device
are generated using the PingPong software. Python scripts then
extract relevant signature information from these files which
is then converted into JSON file to configure the switch. The
P4 program is then installed on the switch and the match-
action tables are configured using forwarding rules based on
the JSON files. Afterwards, the network traffic is replayed on
a switch interface to test FingerP4.

B. Data Plane Design

The State Machine abstraction is utilized in identifying
a signature in the fingerprinting design. Figure 1 gives a

brief overview of how a packet is processed in the Ingress
processing. Since all the packet processing for FingerP4 oc-
curs before the output port for the packet is set, the whole
design is implemented inside ingress pipeline [8]. Normal
State Machine and Recirculate State Machine are the two
instances of the State Machine Function (II - C). We use a
metadata variable, recirculate check, to check if the packet
being processed is a recirculated packet. It is then passed
through a length filter which checks if the Ipv4 length of the
packet matches any of the lengths from all the valid signatures.
The length filter reduces the number of false positives and
the load on our design by only allowing the relevant packets
to access the state machines. If a packet matches the length
filter, it is sent to the Normal State Machine. In case the
Normal State Machine is handling another signature, the
packet is recirculated and the recirculate metadata is set to
true. Recirculated packets are sent to the start of the ingress
pipeline for re-processing. Recirculated packets are then sent
to the recirculate state machine for processing. Therefore, a
packet from a valid signature would always find a match either
in the recirculate state machine or in the normal state machine.
As soon as the signature is found, the packet is forwarded to
the destination port using a forwarding table.

C. The State Machine Function

P4 programming language is used along with an FSM
mechanism to achieve the goal of identifying signatures of
devices in the data plane. To understand the design for the
project, it is important to explain the FSM used in the solution.
Figure 2 gives a brief overview of how our state machine



function works. After checking if the ipv4 header in the packet
is valid, we use a match action table to set the packet direction.
A CRC32 function is applied on the source or destination IP
depending on the direction of travel. This hash function is
used as an index for registers to retrieve the current FSM state
(lookup state table). The retrieved state along with packet
length and direction is used in a match action table to find the
next state (XFSM transition table). On a table hit the next
state is stored in a variable used to update the state in the
register for the associated hash index. If the next state variable
is set to 0, the signature has been fully identified. If there is a
match, then a return variable is set to 1 and the value of next
state is checked to see if a signature is fully identified. The
packet’s timestamp is then compared with a timeout value to
check if the packet lies in the duration of the event in the IoT
device for which the signature is being identified.

III. PRELIMINARY RESULTS

We used a BMv2 switch on a virtual machine provided
by the p4 developers to test our solution. The PCAP files
provided by the PingPong researchers were used to replay the
traffic using tcpreplay [8] on the virtual switch in a mininet
environment with two hosts.

We used several datasets from distinct IoT devices indi-
vidually to test our solution. Table 1 shows the results for
signatures identified by PingPong and signatures identified by
FingerP4. We realized that BMv2 drops some packets at high
traffic rates, so the packets were replayed at a rate of 100
packet per second to get an accurate idea of system behaviour.

TABLE I
SINGATURES IDENTIFIED

Device Name PingPong FingerP4
Amazon Plug 99 99

Ecobee Thermostat Fan 100 100
TP-Link Bulb (On/Off) 100 100

Wemo Plug 100 100
Ring Alarm 98 97
D-Link Plug 101 101

Sengled Bulb (ON/OFF) 97 96

As we can see from the table, most of the signatures identi-
fied by our system match the number identified by PingPong.
There are minor differences which could be attributed to the
behavior of Bmv2 switch. For certain pcap files, the switch
could become congested with the number of packets, dropping
some of them and lowering the number of signatures detected.
We might be able to solve it with either decreasing the rate
of packets or increasing the size of buffers inside the switch.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a tool called FingerP4, pro-
grammed in the P4 programming language, which can identify
IoT devices in the bmv2 switch. By doing it on the data plane
we can reduce the load on the control plane and also utilize
the processing power of the switch. To achieve this goal, we
used PingPong to generate signature files to uniquely identify

devices and events, ON/OFF, based on packet lengths and
direction of flow. Future work includes testing our solution
on a real hardware switch and evaluating the results. Also,
additional testing parameters such as throughput analysis could
be introduced to compare if detecting signatures in the data
plane is more efficient than in a server based version. Datasets
from more devices provided by PingPong researchers could
also be used to test a greater variety of devices.

REFERENCES

[1] A. Ltd., ”What are IoT Devices”, Arm — The Architecture for the Digi-
tal World, 2021. [Online]. Available: https://www.arm.com/glossary/iot-
devices.

[2] J. Chen, ”Smart Home”, Investopedia, 2021. [Online]. Available:
https://www.investopedia.com/terms/s/smart-home.asp.

[3] A. Holst, ”Topic: Smart home”, Statista, 2021. [Online]. Available:
https://www.statista.com/topics/2430/smart-homes/.

[4] R. Trimananda, J. Varmarken, A. Markopoulou, B. Demsky, “Packet-
Level Signatures for Smart Home Devices,” in Proceedings of the 2020
Network and Distributed System Security Symposium (NDSS). February
2020, San Diego, CA.

[5] A. Fingerhut, A. Bas, A. Sivaraman and D. Arora,
”p4lang/behavioral-model”, GitHub, 2020. [Online]. Available:
https://github.com/p4lang/behavioral-model.

[6] S. Bai, H. Kim, and J. Rexford, “Passive OS Fingerprinting on Com-
modity Switches,” 2019.

[7] Klassen, F., 2021. Tcpreplay - Pcap editing and replaying utilities. [on-
line] Tcpreplay.appneta.com. Available at: https://tcpreplay.appneta.com/

[8] OpenFlow Switch Specification - Open Networking Foundation. Open
Networking Foundation (ONF), 2014, p. 35.

[9] C. Talk, ”What is Software-Defined Networking
(SDN)? - Ciena”, Ciena.com, 2021. [Online]. Available:
https://www.ciena.com/insights/what-is/What-Is-SDN.html.

[10] ”The basics of SDN and the OpenFlow Network Architecture”, Novi-
Flow, 2021. [Online]. Available: https://noviflow.com/the-basics-of-sdn-
and-the-openflow-network-architecture/.

[11] C. Craven, ”What Is OpenFlow? Definition and How it
Relates to SDN”, sdxcentral, 2021. [Online]. Available:
https://www.sdxcentral.com/networking/sdn/definitions/what-is-
openflow/.

[12] S. Jena, “Difference between Control Plane and Data
Plane,” GeeksforGeeks, 18-Aug-2020. [Online]. Available:
https://www.geeksforgeeks.org/difference-between-control-plane-
and-data-plane/. [Accessed: 21-Jul-2021].

[13] OpenState: G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Open-
State: Programming Platform-independent Stateful OpenFlow Applica-
tions Inside the Switch” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 2, pp. 44–51, 2014

[14] C. Kim, “The Forwarding Plane: An Old New Frontier of Networking
Research,” in CS244, 21-Jul-2021.


