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Abstract—Smart grids rely on SCADA (Supervisory Control
and Data Acquisition) systems to monitor and control complex
electrical networks in order to provide reliable energy to homes
and industries. However, the increased inter-connectivity and
remote accessibility of SCADA systems expose them to cyber
attacks. As a consequence, developing effective security mecha-
nisms is a priority in order to protect the network from internal
and external attacks. We propose an integrated framework for an
Intrusion Detection System (IDS) for smart grids which combines
feature engineering-based preprocessing with machine learning
classifiers. Whilst most of the machine learning techniques fine-
tune the hyper-parameters to improve the detection rate, our
approach focuses on selecting the most promising features of
the dataset using Gradient Boosting Feature Selection (GBFS)
before applying the classification algorithm, a combination which
improves not only the detection rate but also the execution
speed. GBFS uses the Weighted Feature Importance (WFI)
extraction technique to reduce the complexity of classifiers. We
implement and evaluate various decision-tree based machine
learning techniques after obtaining the most promising features
of the power grid dataset through a GBFS module, and show
that this approach optimizes the False Positive Rate (FPR) and
the execution time.

Index Terms—SCADA Systems, power grids, random forest,
gradient boosting, feature selection, cyber security, network
intrusions

I. INTRODUCTION

OWER grids are the basic infrastructure that support our
economies and daily lives by providing and sustaining a
continuous supply of electricity. They play a fundamental role
in connecting our industries and homes with locations far away
from where the electricity is generated, while assuring the
quality of the electricity supply at the point of consumption.
These systems are complex and distributed in nature and
comprise several components such as power lines, transform-
ers, sensors, phasor measurement units (PMUs) and sub-
stations connected to supervisory control and data acquisition
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(SCADA) systems for real time monitoring, management and
control. Figure [I] illustrates the block diagram of a SCADA
architecture for a power grid, showing SCADA components
such as SCADA Master, HMI, PLCs, RTUs , and various
power grid components such as IEDs, substation switch and
control room components.

Generally, the sensors and PMUs at power stations moni-
tor different attributes of electrical signals continuously and
transmit that to the field control devices such as PLC, RTU,
or IED. Communication between the field control devices and
the SCADA master takes place via communication links and
switches. The SCADA master is located at the control center.

The field control devices supply digital status information
to the SCADA Master to determine acceptable parameter
ranges. This information will then be transmitted back to the
field device(s) where action may be taken to optimize the
performance of the system. Moreover, the status information
is stored in a data historian and displays it on an HMI (Human
Machine Interface), which provides centralized monitoring and
system control.

Originally, power grids were designed to generate and dis-
tribute the electricity in an efficient and timely manner, rather
than focusing on security aspects of the critical infrastructure
of the system. However, the increase of inter connectivity
and remote accessibility places power grids under the risk of
internal and external attacks.

Real-time cyber attacks can disrupt entire power grids. For
example, in 2003 the Davis-Besse nuclear power plant near
Oak Harbor, Ohio was infected by a Slammer worm that
traveled from a consultant’s network to the process control
network and generated unwanted traffic [1]. As a result, the
plant personnel could not access the safety parameter display
system for around five hours which showed sensitive data
about the reactor core, temperature, and radiation sensors of
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Figure 1: SCADA System Architecture for Power Grids
Legend: PLCs: Programmable Logic Controllers, RTUs: Re-
mote Terminal Units, HMI: Human Machine Interface, IEDs:
Intelligent Electronic Devices

the power plant. In 2006 the Browns Ferry nuclear plant in
Athens, Alabama was shut down after the failure of critical
reactor components and controllers due to a cyber attack on
their internal network [2]. In 2008, the second unit of the
Hatch nuclear power plant in Baxley, Georgia experienced
an automatic shutdown due to routine software update to a
single computer on the plant floor. The update was performed
to synchronize data between the plant and business networks
[2]. Another incident in an Iranian nuclear plant was reported
in 2011 where the plant process was interrupted due to the
Stuxnet worm. This attack was initiated by connecting an
infected USB drive to the Programmable Logic Controller
(PLC) at the plant floor [3]. The Ukraine power plant cyber
attack was reported in 2015 [4]. This was the first known
successful attack on power grids where attackers were able
to disrupt electricity supply to the end users. Thus, power
grid attacks are one of the most critical issues in industrial
control systems and it is important to protect them by applying
adequate safety measures [5].

General safeguards include defense-in-depth architecture
which separates the control and corporate network traffic,
strong access control and authentication mechanisms, re-

stricted perimeters using DMZ (demilitarized zone), vulnera-
bility assessment and risk management systems [6]]. However,
these safeguards are difficult to deploy and maintain owing to
legacy-inherited security loopholes and restrictions [7]]. There-
fore, these relevant preemptive measures are not sufficient
to protect the power grids from cyber attacks. Additional
protection layer is also required which detects and prevents
the system from malicious events and threats.

Generally, packet filtering and identification of threats are
key to securing these systems. However, traditional firewalls
do not always fulfill all the security requirements of critical
infrastructures. For example, in 2019, the western US power
grid infrastructure was hacked. The intruders created periodic
blind spots for grid operators for about 10 hours, by identifying
a vulnerability in the firewall configuration [8|]. Therefore,
the design and development of sophisticated and accurate
intrusion detection and prevention systems are one of the
primary objectives to secure power grids.

Researchers and security experts have proposed various
intrusion detection and prevention approaches to ensure se-
cure and safe operations of power grids. A signature-based
approach is used for pattern matching to determine frequent
signatures of malicious packets [9]. In this approach the
signature of every incoming packet is compared with all the
stored signatures to identify threats. This approach is valid for
known intrusions but is unable to identify zero-day attacks [9].

More recently, data mining, clustering and statistical signal
processing approaches have been used for anomaly detection.
These techniques are effective compared to pattern-matching,
but usually generate a high level of false-positive alarms [10].
Therefore, there is a need for better techniques that detect
intrusions from real incoming traffic. Machine Learning and
Deep Learning have stronger pattern recognition capabilities
than standard approaches. These techniques train and test
the model according to real network traffic to detect anoma-
lies with better precision and generate a smaller number of
false-positive alerts. Some of the most prominent machine
learning techniques include decision trees, Bayesian, genetic
algorithms, neural-networks and support vector machines [[11]].

Decision tree algorithms, which make decisions using bias
and variance analysis mechanisms are one of the powerful
supervisory machine learning techniques. Furthermore, ensem-
ble methods use the principle of combining weak learners to
obtain a stronger predictive model for better prediction and
performance. Ensembles can be obtained by boosting, which
is a specific mechanism where learners gradually learn from
the previous weak learners to reduce the overall loss function.
Moreover, Gradient Descent is used to optimize the overall
tree selection. This combined approach provides a powerful
method for identification and pattern recognition capabilities
for structured data [[12].

Our proposed approach uses the Gradient Boosting algo-
rithm as the base classifier to detect malicious activities in
power grids. To solve the classification and regression prob-
lems, the ensemble Gradient Boosting algorithm has proven
to be more efficient than traditional boosting approaches [13]].



The ensemble Gradient Boosting algorithm is an ensemble
learning method based on a combination of additive models
(weak learners), which can gradually learn from the previous
misclassifications to create a stronger learning model [14].
This algorithm has been complemented with a feature selection
process that increases the overall performance by extracting
the most relevant features from the input data.

The proposed technique has been developed using various
library functions of the open source library scikit-learn [15].
The library offers various classification, regression, and clus-
tering algorithms. Table [] summarizes the general scientific
meanings of the software implementation terms used in this

paper.

Table I: General scientific meanings of software implementa-
tion terms

Term Description

scikit- learn This is a Python module integrated with
a wide range of machine learning tech-
niques for both supervised and unsupervised
learning. We have used various functions of
scikit-learn library for the implementation
and comparative analysis of the proposed

methodology.

This term indicates the number of trees that
we want to build for the average prediction.
For the proposed feature selection technique,
we have tuned this parameter by creating
100, 500, 700, and 1000 trees at each it-
eration.

Num_trees

This refers to the meta-transformer tech-
nique, which uses the WFI scoring model
to remove insignificant features according to
the threshold value. In this paper, we have
used Grading Boosting as a base model, and
the threshold value is set to 0.5 to remove
the unimportant features.

Model based feature selection

The major contributions of this paper are as follows.

1) We use the gradient boosting weighted feature importance
scoring model and tune the Num_trees parameters to
identify the top important features. To make it more
efficient, we merge these two concepts to select the
most promising and common features from the existing
datasets that reduce the overhead and increase the execu-
tion speed for SCADA based power grids.

2) We derive 15 most promising features from the binary
class and apply the same features to the rest of the three
categories, namely, three class, seven class, and multi
class, to evaluate the performance of the feature selection
module.

3) We evaluate eight different tree-based algorithms to val-
idate the effectiveness of the selected features for the
classification of various power system attacks.

4) We perform a comparative analysis of eight tree-based
classifiers and identify the top three tree-based classifiers
according to multiple performance metrics.

5) We compare the accuracy of proposed methodology with
published state-of-the-art techniques.

The rest of this paper is organized as follows. Section II
describes related research in the area of power grid security by
considering various attacks and protection schemes. The pro-
posed intrusion detection system framework based on Gradient
Boosting Feature Selection is introduced in Section III. Section
IV covers algorithm conceptualization and mathematical proof
of our approach. Section V describes the proposed mechanism
of feature selection by combining regularization strategies with
Weighted Feature Importance metrics. Section VI presents the
complete experimental setup, evaluations, result-analysis and
comparative studies of various tree-based machine learning
techniques performed on power grid datasets. Conclusion and
future work are provided in Section VII.

II. BACKGROUND AND RELATED WORK

Many researchers have proposed different types of intrusion
detection systems (IDSs) according to the need of securing
various components in power grids. For example, one approach
is specifically focused on security of the RTU and the PLC, as
these devices are easy targets for cyber attacks [[16]. A real-
time attack with malware running on a PLC was demonstrated
by black hat researchers in 2016 [17]].

Malicious cyber-attacks have costly consequences in power
grids, and as a result the grid operators are increasingly
investing in IDSs. IDSs are typically based on the principle
that attacks show different behavior and patterns from the
normal traffic [18]]. In this sense the classification problem
can be reduced to a pattern recognition activity. To identify
malicious behavior, identifying a pattern that differs from the
normal flow is required. The traditional approach is to develop
a signature of the attack and recognize this signature. This
method requires extensive manual work as the signature is
manually added to the database when the attack is identified
and its signature extracted. A more sophisticated approach is
to use machine learning to perform the pattern recognition
process [11].

Feature selection is also known as dimensionality reduction,
which is used to improve the accuracy of estimators and boost
the performance of the high-dimensional datasets. The feature
selection techniques are mainly categorized into four types,
namely, Variance Threshold (VT), Univariate Feature Selec-
tion (UFS), Recursive Feature Elimination (RFE) and Model
based feature selection. VT is a simple baseline approach that
removes all the variance which does not meet the threshold,
whereas UFS follows the method of a statistical test to identify
the best features [19]]. In the UFS approach, the features are
selected by either comparing false positive rates or obtaining
scores or percentile of the given features [20]. Moreover, the
configurable strategy of UFS allows a combination of two
approaches, namely, univariate selection and hyper-parameter
search estimator.

On the other hand, RFE selects the features recursively
by comparing the outcome of a larger set with the smaller
set while training the dataset [21]]. This technique is more
efficient in terms of estimators’ accuracy scores but compu-
tationally costlier than VT and UFS. Model based feature



selection method is a meta-transformer that uses the WFI
scoring model to remove unimportant features according to the
threshold value [22]. This is comparatively faster than other
techniques as feature importance score is obtained during tree
construction. Moreover, this method can easily be merged with
other estimators, such as tuning the parameters.

To identify top features, we have used a gradient boosting
based WFI scoring model to discard the irrelevant features
along with Num_trees to tune the parameters. This approach
improves not only the accuracy of the tree-based classifiers
but also the execution speed.

Several machine learning approaches have been tested to
filter malicious packets, for instance, K-nearest neighbours (k-
NN) is quite effective, since its main characteristic, is being
a ‘lazy learner’ - it does not contain the trained model but
builds it real-time by learning from the nearest neighbours
- is very well aligned to this task. However it has high
performance requirements and may have fitting issues for
imbalanced small datasets [23]]. Other tested approaches such
as Support Vector Machines (SVM), which maps the inputs
into another dimensional space, offer good results, but are
costly to train. Neural network approaches have also shown
strong representational capabilities, but have not yet been
widely applied in commercial applications [11].

In the classification field, and for structured data inputs, the
gradient boosting family of algorithms shows improved repre-
sentation capabilities [24]. This approach combines boosting
with decision trees techniques. Specifically they combine ran-
dom tree refinements with boosting techniques’ optimization.
Variants like Gradient Tree Based Boosting (GTBM) or the
recently developed XGBoosting (Extreme Gradient Boosting)
are becoming tools of choice in many applications [24].
However their effectiveness has not been widely studied on
various IDS applications, which is the main motivation for
this work.

Furthermore, power grid SCADA systems rely on real time
request response mechanisms to operate the sub-station com-
ponents accurately by consuming minimal CPU and battery re-
sources. For such time-critical systems, the deployed intrusion
detection system should act as quickly to capture malicious
activities using minimal resources in a given time period
for larger-scale deployments. Our proposed model leverages
all the competencies for such systems. The model offers a
combination of efficiency with precision, as it reaches high
accuracy levels while using a limited amount of resources.
This combination makes this model a good fit for mission
critical applications or for large sets of disseminated SCADA
devices, that have limited computing availability for filtering
mechanisms, and both these properties fit very well with the
power system scenario.

III. FRAMEWORK FOR A GBFS BASED INTRUSION
DETECTION SYSTEM

This section presents the proposed framework for an intru-
sion detection system that distinguishes normal and malicious
events by analyzing SCADA traffic on power grids. The

proposed framework operates in three phases, namely, pre-
processing the data, feature selection, and anomaly detection
using a classification approach. The elements for each phase
are illustrated in Figure
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Figure 2: Framework for a GBFS Based Intrusion Detection
System

During the data preprocessing phase, data cleansing, feature
mapping and feature normalization are applied to the raw
dataset to obtain filtered data. Then the Gradient Boosting
Feature Selection approach is applied on filtered data to
select the most promising features from the entire dataset
dynamically. Since power grids use a complex mix of SCADA
systems to control field-site components, network monitoring
devices such as SNORT and Syslog are used to capture the
different types of features [25]].

Usually, real-time data obtained from sensors or real-time
systems always presents some consistency issues, the signal
is lost, or the measuring devices get off the scale readings at
some point. For this reason, we need to do a data cleansing
operation to remove incorrect data. We remove infinities and
NaN values, looking for empty sequence points that will be
avoided by the algorithms.

Furthermore, in order to extract the relevant features, we
apply a Gradient Boosting Feature Selection which uses
Weighted Importance Feature extraction method to select the
most promising features. This approach helps to improve the
computational speed and also assists in providing a precise
outcome for anomaly detection. Moreover, reduction in fea-
tures helps in consuming less memory while training and
testing the dataset during classification to classify normal and
attack events.

IV. GRADIENT BOOSTING AND XG BOOSTING THEORY

In this work, we have used the combination of two main
concepts, namely, the gradient boosting WFI scoring model
and Num_trees for feature selection, and XGBoost as one of
the classification methods.

One of the most efficient techniques of the tree-based
ensemble method is called boosting, which stores the labels



and weights of the leaf nodes that make the prediction inter-
pretations easy to handle. Gradient boosting [26] is a practical
approach proposed by Chen et al [24] and is considered as
one of the algorithms of choice in machine learning. We can
obtain a strong learner by combining weak learners during the
gradient boosting process. In this technique, the classification
is dependent on the residuals of the previous iteration where
the impact of each feature is evaluated sequentially until a
target accuracy is obtained. The residuals are calculated by a
Loss function £(¢) that is optimized using gradient descent.
The final result ¢(X) is obtained by the addition of the results
of the K sequential classifier functions fj as follows:

K
Y=0(X)=) fi(X) freF (1)
k=1

where fi is a decision tree, and K is the total number of
iterations in the boosting algorithm.

XGBoosting has two enhancements, an improvement over
Gradient Descent and a more sophisticated regularization
strategy. The regularization factor to the cost function controls
the optimization process and manages the overfitting factor.
In this, the function to optimize in Step ¢ is called the
regularization term Q(f;) and we use it in the following
equation to calculate a Loss function £(¢); at step t.

L(d)e = Zl(ftﬂ + fi) +Q(fr) (2)

Without the regularization factor, the tree will split until it
learns all the features of the training set, which may result
in overfitting. By using a regularization function the training
stops when the function identifies that the model is good
enough based on the learning score, which avoids the chance
of overfitting.

During optimization, the regularization term is improved
by approximation using a short Taylor series decomposition.
For complete details of XGBoost, we refer the reader to the
original article written by Chen et al [24].

A. Using Weighted Feature Importance (WFI) for Feature
Selection

Gradient boosting uses a powerful metric, called
feature/importance, to retrieve the scores of each attribute
according to importance after the boosted tree is constructed.
This scoring model provides the importance of each attribute
in terms of making key decision while constructing decision
trees. Generally, feature importance provides a score that
defines the significant role of each attribute. This importance
is computed explicitly by comparing and ranking all the
features amongst one another in the dataset. The importance
of a single decision tree is calculated by the amount of each
attribute split point, weighted by the number of observations
from that node. This split point is used to improve the
performance and efficiency of the algorithm.

In particular, purity (Gini Index) is used to select the split
points or to identify a more specific error function. The feature
importance of each tree is averaged across all the decision

trees within the model. The Model based feature selection
class is used to transform a dataset into subsets by using the
most promising features. The focal point of this approach is
to embed the preprocessing with this model using WFI to
reduce the training time by removing irrelevant features from
the given dataset. Once the most promising ones are derived
through the GBFS technique, we can effectively use them for
training and testing the model.

V. A NOVEL WEIGHTED FEATURED SELECTION
ALGORITHM FOR INTRUSION DETECTION

A. Power System — Testbed Description

This section describes the overall approach with regard
to multilevel multiple attack vector classification of power
system disturbances. To evaluate the performance of the GBFS
based proposed algorithm, three publicly available datasets are
used [27]. These datasets were created at Oak Ridge National
Laboratories (ORNL) using the power system testbed.

The power system testbed configuration has been imple-
mented using power generators- G1,G2 and IEDs - R1 through
R4, to control the breakers BR1 through BR4, on or off,
respectively. To fulfill the simulation requirements, the three-
bus two-line transmission system is created [28|]. Each one
of the four IEDs uses a distance protection scheme to trip
the respective breaker in case of fault detection, whether the
nature of the fault is valid, or faked since they do not have
smart logic to detect the difference between original and fake
faults. Furthermore, operators can manually trip the breakers
by issuing commands in case of maintenance on the lines or
other system components [25].

B. Dataset

The datasets include measurement related to normal, dis-
turbance, control and cyber attack behaviours with regards to
electrical transmission system in the power grid [29]]. There are
three publicly available datasets and two of them are derived
using the third main dataset consisting of fifteen sets with
37 power event scenarios in each dataset. The datasets are
randomly sampled and categorised into three major classes;
Binary, Three-class and Multiclass. Furthermore, we have
derived a fourth dataset named Seven-class of fifteen sets
from the Multiclass dataset, consisting of seven power event
scenarios in each.

The experiments were carried out using 4 different cate-
gories of the datasets where the Binary dataset has two output
labels, namely, normal and attack, The Three-class dataset has
three output labels - one additional label to binary dataset
is no event. The Seven-class dataset has seven output labels
as follows: 1 natural SLG (Single Line Ground) fault event
owing to short-circuit in a power line, 1 data injection attack, 2
remote tripping command injection attacks and, 3 relay setting
change attacks. The 37 scenarios of Multiclass dataset are
divided mainly in three categories - Natural events, 1 No event
and 28 Attack events. 8 Natural events categorized in 6 SLG
faults and 2 Line maintenance events. Furthermore, no event
indicates normal operation load changes and 28 attack events



are mainly divided into 3 major attack events termed as Data
Injection, Remote Tripping Command Injection and Attack on
Relay Setting. These attacks are further subcategorized in 6
data-injection SLG fault replay attacks, 4 command injection
attacks against single IED (relay), 2 command injection attacks
against two IEDs, 10 relay setting change attacks on a single
IED, 4 relay setting change attacks on two IEDs, and 2 relay
disable and line maintenance attacks [30]]. Moreover, these
authentic datasets are used in various experiments related to
power system cyber-attacks classification [27]]. All the attacks
scenarios are simulated by assuming that the intruder is an
internal entity, which is capable enough to launch various
attacks by issuing malicious commands from the substation
switch [25].

Each power grid dataset consists of 128 features. To derive
these features, 4 phasor measurement units (PMUs) are used
to measure the electrical signals on an electrical power grid
using common time source to maintain time synchronization.
Each PMU measures 29 features, hence in total 116 PMU
measurement carried out using 4 PMUs. These features are
referred as R# - signal_Reference which indicates the index
of PMU and type of measurement. For example, R1-PA1:VH
represents the Phase A voltage phase angle measured by PMU
R1 [27]. Also, 16 more columns are additionally inserted by
control panel logs, snort alerts and relay logs where relay and
PMU are integrated together [[30]. The last column represents
the marker to label different events. The description of all
the features is shown in Table Also, each set of 15 sets
consist average 294 “no event” instances, 1221 natural events
instances and 3711 attack vectors across the classification
schemes [25].

Table II: Description of features

Feature Description

PA1:VH-PA3:VH Phase A-C Voltage Phase Angle
PM1:V-PM3:V Phase A-C Voltage Magnitude
PA4:TH-PA6:TH Phase A-C Current Phase Angle
PM4:1-PM6:1 Phase A-C Current Magnitude
PA7:VH-PA9:VH Pos.-Neg.-Zero Voltage Phase Angle
PM7:V-PM12:V Pos.-Neg.-Zero Voltage Magnitude

PA10:VH-PA12:VH
PM10:V-PM12:V

Pos.-Neg.-Zero Current Phase Angle
Pos.-Neg.-Zero Current Magnitude

F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Apparent impedance seen by relays

PA:ZH Apparent impedance Angle seen by relays
S Status Flag for relays

C. Regularization Strategies

Generally, boosting algorithms play a vital role in control-
ling the bias-variance trade-off. The objective of the gradient
boosting algorithm is to generate an optimal combination
of the trees while training the model using the concept of
binomial deviance theorem. In addition to minimizing the loss
function to the smallest possible degree, it is necessary to tune
the hyper-parameters carefully, since complex trees overfit and
simple trees can move the model to under-fitting. The majority

of the tuning parameters are divided into two categories, one
is specifically meant for construction and efficiency of each
individual tree, and the other type of boosting parameters
are used to boost the operation in the model. Owing to this
fact, we have tuned the hyper-parameters by extensive grid
search, taking learning rate, sub-samples and Num_trees into
consideration.

We have analyzed the effect of different regularization
strategies on various datasets by implementing a grid search.
Figure [3] illustrates the effect of boosting parameters of one
of the 15 binary datasets. According to the results depicted
in the graph, regularization via shrinkage (learning rate =
0.1) improves the performance significantly, as compared to
without shrinkage (learning rate & subsample = 1.0) and in
the case of stochastic gradient boosting (combination with
learning rate and subsample < 1.0).

12 Mo shrinkage - Learning_rate=1.0
= Learning_rate=0.5
= Learning_rate=0.1
o L0 Learning_rate=0.01
% — Learning_rate=0.5; Subsample=0.5
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Figure 3: Different Regularization strategies applied on a
binary classification. A hyper parameter optimization (learn-
ing rate = 0.1) improves the result significantly, with small
learning rates more trees are required for convergence

D. Feature Selection

Generally, when we have a big model with hundreds or
thousands of features, the feature selection approach is used to
choose the most promising features and to remove irrelevant
features while retraining the model. Also, by analyzing the
importance of each feature manually, we can get an idea of
what the model is doing, and the model is working well.
Here, we derive the importance of each feature by applying
WFI scoring method on Gradient Boosting trained model.
Furthermore, all the features are depicted as a percentage
rating of how often the feature is used in determining the
output label. To make the list of features easier to read, we
have sorted them from most important to least important as
shown in Figure []

The feature importance scores reflect information gain by
each feature during the construction of a decision tree. During
experiments, we observe 50% of the 128 features are not
contributing to making any decision. The WFI score of such



Table III

Gradient Boosting Feature Selection (Best 15 Features of 15 Datasets for all the four categories - Binary, Three classes, Seven classes

and Multi-class)

features {1 f2 3 4 5 6 7 8 9 £10 fl1 f12 f13 fl4 f15
DI R2PA3VH RI-PMIO:I RI-PAL:VH R2PMI:V R2-PAIO:IH R2-PASIH R2-PMIO:I R3-PAS:IH RI-PM5I R3-PAL:VH R2-PMS1 RI-PASIH R4-PAL:VH R3-PA7:VH RI-PAT:VH
D2 R2PM3:V R4-PA2:VH RI-PAZ:VH R2PMI:V R4-PAL:VH RI-PASTH R4-PM2:V RI-PAL:VH R3-PM7:V R2-PA3:VH R2-PA7:VH R4-PML:V R3-PAS:IH R3-PM5I RI-PAT:VH
D3 R3-PA4IH R2-PMIO:I R3-PA2:VH R2-PA2VH R2-PM5I1 R4-PAL:VH R2-PA4IH R3-PM2:V R2-PASIH RI-PMS:I R3-PA3:VH R2-PA3:VH R3-PM51 RI-PA7:VH R4-PM5I
D4  R2PAZ:VH R4-PM5I R4-PA2:VH R4-PA3:VH R4-PA7.VH RI-PASIH R4-PM2:V R2-PA2:VH R2-PAS:IH R4-PAI:VH RI-PM51 R4-PASIH RI-PA3:VH RI-PA2VH R2-PMSI
D5  R3-PAZ:VH RI-PASIH R4-PM2V R4-PALIH R4-PASIH R4-PM5I R3-PMEI  R3-PAIO:IH R2-PASIH R3-PA3:VH RI-PA3:VH R4-PM4:l R4-PAL:VH R2-PA2:VH R4-PA7:VH
D6  R4-PAI:VH R3-PM2:V R3-PA2:VH R4-PM3:V RI-PA2VH R4-PAT:VH R2-PAIO:IH R4-PA2:VH R2-PASIH RI-PMI0: RI-PA7:VH R4-PM2:V R3-PAS:IH R4-PM5:I RI-PMS:I
D7 R4PAGIH RI-PAZ:VH RI-PM51 RI-PAI:VH R2PM7:V RI-PAGIH R4-PA7:-VH R3-PASIH R3-PA6IH R4-PAI:VH R4-PA3:VH R3-PM2V R4-PM7:V R2-PA3:VH R3-PA3:VH
D8  R4-PAT:VH RI-PM2:V RI-PA2:VH R2-PA3:VH RI-PAS:IH R2-PAI:VH RI-PM51 RI-PA3:VH R3-PAS:IH R3-PAGIH R3-PA2VH R4-PA3:VH R4-PM2:V R4-PAI:VH R4-PASIH
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Figure 4: WFI scoring model to rank the features

features is zero. While, out of the remaining 50% of fea-
tures, 15 features provide a significant contribution in making
decisions during the construction of decision-tree. The WFI
score of those features has high values in the range of 1
to 10. The rest of the 45 features having feature importance
scores between 0 and 1. These 45 additional features contribute
comparatively less and have a large drop in feature importance
score. Altogether the entire dataset is divided into three
levels of information gain groupings, namely, most promising,
slightly contributing, and irrelevant features.

According to [31]], feature extraction creates a subset of the
given features which not only reduces the noise but also im-
proves the classifiers’ performance. Therefore, we have tested
15 datasets of four different categories (binary, three-class,
seven-class & Multi-class) of power grid system created by
the Oak Ridge National Laboratories using the most promising
features [27]. To identify these best features, we use the WFI
scoring model along with concept of Num_trees.

Furthermore, to increase the execution speed, we perform
feature extraction on binary datasets. We repeat the entire
process by taking the various parameter value of Num_trees
to collect various observations. From that we have identified
best features by taking common important features from the
estimations as shown in the Algorithm Here, Num_trees

refers to the number of estimators whereas n refers to the total
number of features. We have used four estimators, namely,
100, 500, 700, 1000 and initially dataset consist of n = 128
features.

Algorithm 1: Weighted Feature importance based on
a Gradient Boosting Feature selection model

Input: Training power-grid dataset PD
Output: Selected feature subset Selected PD
Initialize: Current power-grid dataset
Current-PD={1,2,--- ;n};

begin

i+ 0

Num_trees < {100, 500, 700, 1000}
Num_trees < Num_trees (i)

while Features(Num_trees > 0) do
(1) Create GB model on value Num_trees

(2) Evaluate Ranking with WFI scoring
(3) Remove features lower importance
(4) Store the features in Scored-PD

(5) Num_trees <— Num_trees (i+1)
end

(6) Compare features of Scored-PD from all
Num_trees

(7) Take common features of Scored-PD
Selected-PD <« Scored-PD

end

Figure [5] represents the relative importance of each attribute
on the binary dataset by considering four estimators. The
high vertical bars represent the most promising and common
features in all four estimators. In this experiment, all estimators
use the top 15 features for each ensemble. In Table we
observe the most promising features across all 15 datasets.
Also, to validate the strength of the selected features, the same
15 ones are applied to all four categories (Binary, three classes,
seven classes and Multi-class) of intrusion classification. It can
be observed that each dataset has a different set of stronger
features, a conclusion that points to independent feature selec-
tion process for each dataset type. The most important features
which contribute in determining the intrusions are Voltage
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Figure 5: Represents the relative importance of each attribute of the dataset with 5000 records;computed by considering four

estimators Num_trees = 100,500,700,1000

Phase Angles, Voltage Magnitude, Current Phase Angles and
Current Magnitudes according to the attack location on PMUs.

VI. EXPERIMENTS
A. Evaluation parameters

The choice of the evaluation parameters always depends
on the nature of the dataset, whether it is a multi-class or just
binary. Typically, datasets are imbalanced in nature, a property
defined by having classes of different sizes. Hence to evalu-
ate the efficiency of the proposed GBFS based framework,
our approach does not only relies on the accuracy of the
classifier but also incorporates other assessment parameters
like Detection Rate (True Positive Rate also called Recall &
True Negative Rate), Precision, F1 Score and Miss Rate (False
Negative Rate).

The assessment metrics, namely, accuracy, recall, precision
and false negative rate depend on the following four param-
eters,namely, True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) |]3;Z[] TP refers to the
number of actual attacks which are classified as attacks, TN
refers to the number of normal events classified as normal
events, FP refers to the number of normal events misclassified

as attacks and FN refers to the number of attacks misclassi-
fied as normal events. The evaluation metrics are defined as
follows, described from the basic four definitions.

o Accuracy is the percentage of all normal and attack
vectors that are correctly classified:

N TP+ TN o)
ccuracy =
Y= TPYTN+FP+FN

« Detection Rate (True positive Rate (TPR) and True Neg-
ative rate (TNR)) refers to the percentage of total relevant
results correctly classified by the classifier

TP

TPR = m (attack VeCtOr) (4)
TN

TNR = m (normal eVent) (5)

e Precision or Positive Predictive Value (PPV) refers to the
percentage of the results which are relevant.

PPV (attack event) (6)

TP
TP+ FP
o F1 Score is simply the harmonic mean of precision and



recall evaluating the outcome in balanced mode
Precision * Recall

F1 =2 7
—seore * Precision + Recall )

« Miss Rate (FNR/FPR) is derived by subtracting the value
of TPR from 1.

FPR=1—-TNR (attack) ®)
FNR =1—-TPR (normal) )

B. Experimental results

Our target is to develop a model in such a way that it can be
easily deployed in a real-time power grid. For that, the model
should be fast and smart in identifying malicious events that
occur in the network. Therefore, we target the most relevant
features to classify normal and attack vectors. To compute the
most promising features, we have used a WFI scoring model
of Gradient Boosting feature selection. We have applied the
GBFS approach on the binary dataset by considering multiple
values of Num_trees = 100, 500, 700 and 1000 to identify
the most common amongst all. From our observations, we
conclude that mostly in each estimation the top 15 features
remain the same.

We conclude, experimentally, that high accuracy values
comply with a small learning rate, hence we decided to set
the value of Num_trees = 1000 along with learning rate = 0.1.
After computing 15 features of 15 sets of a binary dataset,
we used the same features to compute the three-class, seven-
class and multi-class dataset to detect the various attacks as all
the four datasets of 15 sets have the same input measurement
records - only the output label differs according to the category
of the dataset. Table represents the 15 features of 15
sets for all the four categories. Also, the primary goal of
choosing a binary dataset to compute the promising features
is to achieve faster execution speed and precise outcome in
terms of detection rate as it only contains normal and attack
vectors. Moreover, we have applied the same features to the
rest of the three categories as basically all the categories are
containing both malicious and normal events.

The datasets are well suited for ensemble classifiers since
each set of the 15 datasets is produced at different attack
locations by ORNL, and each consists of approximately 5500
records. The significance of the features depends on the loca-
tion of the attacks on PMUs. Hence, the automatic stepwise
feature selection is one of the crucial points for classification,
which can be effectively handled by tree-based ensemble
classifiers. Furthermore, for the proof of the concept, we have
evaluated the accuracy of other machine learning techniques
such as Naive Bayes, Support Vector Machine (SVM), Simple
Logistic Regression (SLR), One Rule (OneR), Decision Table
(DT) and Artificial Neural Network (ANN) for all the four
categories as mentioned in Table III. We focus on tree-based
ensemble classifiers since they give the best accuracy.

To evaluate the efficiency of the top 15 features in terms of
detection rate and execution speed, we have applied various
classifiers on all the 15 datasets of four categories. As the
computed features are generated using the GBFS technique,

Table IV

Comparative Analysis (accuracy) of various machine learning techniques
Naive

Classifiers SVM SL OneR DT ANN
Bayes

Binary 54.17 70.2 78.04 81.87 89.86 88.34

Three-State 50.62 69.46 69.85 75.02  81.27 80.43

Seven-State 20.04 37.45 42.55 57.12 80.32 61.97

Multi-State 11.59 20.81 32.76 40.22  73.72 61.13

we specifically target decision tree classifiers with a combi-
nation of boosting approaches such as GB, XGBoost, Ran-
dom Forest(RF), AdaBoost Random Forest(AdaBoost-RF),
ClassificationViaRegration- Random Forest(CVR-RF), Ran-
dom Tree, AdaBoost Random Tree and J48.

The proposed framework is programmed using Python on
a Jupyter Notebook (Anaconda distribution) on Windows 10
with Intel Core i5-8300H 2.30GHz processor, 16 GB RAM
and Nvidia Geforce GTX 1060 6go GPU. The results of
classification of various classifiers are also validated using a
WEKA platform [33]]. The experiments are computed using
random samples of 100,000 normal and attack observations
for each of the four categories divided into 15 sets. The
training and testing set of the model is obtained using 10-fold
cross-validation methodology to measure the accuracy without
biasing the normal or malicious output classes.

To assess the performance of each classifier, we have com-
puted the following performance metrics: accuracy, detection
rate, false-positive rate, F1 score and execution speed of 15
datasets of all the four categories. The results of performance
metrics are derived from the confusion matrix during each
classification. Figure [6] represents the example of one of the
best confusion matrix of binary, three-class and seven-class
classifier, respectively. Similarly, Figure [/| depicts the most
promising confusion matrix of the multi-class classifier which
can differentiate the total of 37 various attacks and normal
events. By analyzing the confusion matrix, we can differentiate
normal and attack vector in terms of True Positive, True
Negative, False Positive and False Negative.

C. Result Discussion

The purpose of the proposed GBFS based feature selection
framework is to generate a subset of the given attributes from
entire dataset using a WFI metric to reduce the noise and
improve the performance of the classifier. The derived subset
of the top 15 features may or may not contribute same in
the decision-tree classifiers. We have observed the results of
total 8 decision tree-based machine learning techniques to
validate our proposed methodology via multiple simulation
trials. Overall 60 computations are performed to evaluate the
performance of each classifier to include the results of fifteen
datasets of all the four categories. Figure 7 represents the
comparative analysis of the accuracy of eight decision tree-
based classifiers of 15 datasets of each binary, three-class,
seven-class and multiclass categories.

Amongst all the eight classifiers, it was observed that
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Figure 7: Confusion Matrix for the 37 output labels

XGBoost, random forest and its variance have proven to
be most efficient. However, other tree-based classifiers also
proved their efficiency ranging between 92 to 94 for Binary
and three-state and 85 to 90 for seven class and multiclass.
XGBoost comes up with accuracy equal to 97.26, 96.09,
92.97, 92.44 for binary, three-class, seven class and multiclass
datasets, respectively. Similarly, all three variants of Random
Forest also achieve very high accuracy such as 97.26, 97.24
and 97.17 for binary, 96.18, 96.38 and 96.50 for three-class,
94.43, 94.31 and 94.19 for seven class and 92.46, 92.92,
91.92 for multiclass, respectively. Since the GBFS-Random
Forest and its variances are the most efficient classifiers to
classify the normal and attack vectors with nearly same range
of accuracy, we have compared the execution speed of all the

three classifiers to identify the best among them. As depicted
in Figure 0] GBFS-Random Forest classified the various attack
and normal events for all the four categories in 1.5 seconds.
GBFS-AdaBoost Random Forest took slightly more time than
the GBFS-RF. GBFS-CVR-Random Forest took comparatively
higher execution time as it uses the combined approach of
boosting and ensemble of trees for the classification. However,
by comparing the accuracy levels, we observe that the boosting
does not much improve the result much, in such case GBFS-
RF is proven to be best amongst all three with high accuracy
and less execution time.

Table V

Performance evaluation metrics of Proposed GBFS Based Classifier

Measure Binary  Three-class  Seven-Class ~ Multi-class
Accuracy 97.26% 96.50% 94.12% 92.46%
FPR 0.037 0.067 0.019 0.003
Precision 0.9705 0.9887 0.9504 0.9250
Recall 0.9740 0.9676 0.9355 0.9240
F-Measure  0.9723 0.9781 0.9427 0.9244

We demonstrated that the 15 stochastic features shown
in Table were the most promising features for all the
decision tree-based classifiers by iteratively running all the
eight classifiers, for 15 datasets of all the four categories. In
each iteration, using 15 features, we retrained & re-tested all
the eight decision-tree based models to compute the general
average trend of malicious and normal events by observing
DR, FPR and execution Time.

All the selected classifiers maintain very high DR and lower
FPR rate in all the computations as shown in Table[V] We have
achieved 98.5% of detection rate which truly differentiates
attack and normal vectors with only 3.7% and 6.7% of false
positive rate for binary and three class classification. Moreover,
seven-class and multi-class classifiers have also outperformed
as they gave around 94.42% and 92.5% for the detection rate.

This validates the significance of our proposed methodology
for feature selection. Real-time systems such as control and
monitoring systems of industrial infrastructures/power grids
need a methodology of feature extraction where processing
time and storage space are always crucial.
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To validate the efficiency of the proposed methodology, we
have compared GBFS based decision tree algorithm with four
published methods, namely AdaBoost-JRIP (AdaJRIP) [25]],
Common Path Mining [34], [28]], Expectation Maximization
Clustering Technique (EMCT) and Gaussian Mixture —
Kalam Filter Model (GMM-KF) using Pearson Correlation
Coefficient (PCC) feature selection method [35], by consid-
ering various performance evaluation factors such as whether

proper pre-processing is applied or not; to accelerate the
process, whether feature selection approach is incorporated or
not and if applied how many features are selected to evaluate
the accuracy for various output classes.

It can be seen from Table [V]] that our proposed framework
outperforms compared to those of the published techniques
and accomplishes the highest accuracy with the 97.66%,
96.50% , 94.12% , 92.46% with only 12% of the features



for all the four categories of the power system datasets. Note
that the results mentioned in the table refer to the highest
accuracy achieved during the classification of the attacks and
normal events by various tree based classifiers.

Table VI

Comparative analysis of overall performance of various techniques and
Proposed GBFS Based Classifier

Classifier Data Feature Features Classes Accuracy
Cleaning  Selection (%)
2 94.55%
ADA-JRIP [25]
NA NA 100% 3 94.61%
37 85.85%
CPM B4, B8 5 e NA w0o0% 7 9300%
25 90.40%
25% 70.60%
. 50% 76.3%
EMCT [32]  Applied PCC 75% 2 83.5%
100% 90.2%
25% 94.56%
GMMKM [335] Applied PCC 50% 2 95.83%
75% 96.82%
100% 97.27%
2 97.26%
) 3 96.50%
Tree Based Applied GBFS 12% 7 94.12%
37 92.46%

Moreover, in order to show the efficiency, we have com-
pared our proposed scheme with two well-known feature se-
lection methods, namely, Chi-Square and Principal Component
Analysis (PCA), in terms of the number of features, accuracy
and execution time for a binary class using Random Forest
(RF) classifier as shown in Table

Table VII
Comparative analysis of various feature selection methods
Feature Accurac Execution
Selection Classifier Features Class Y Time
Method (sec)
Chi-Square RF 106 2 96.69 4.6
PCA RF 27 2 92.57 43
GBFS RF 15 2 97.66 1.2

As mentioned earlier, data cleansing was performed to
accelerate the process of classification using various ma-
chine learning algorithms. However, the technique in [25]]
has obtained comparatively low results with various well-
known machine-learning algorithms such as OneR, SVM,
Random Forest, Naive Bayes, JRIP and AdaBoost-JRIP owing
to disregarding preprocessing before applying the classification
approach on the power system dataset. As per our observa-
tions, the given dataset needs to be refined by removing infinite
values before mapping and scaling the records. The features
R1:PA:Z, R2:PA:Z, R3:PA:Z, R4:PA:Z, represent apparent
impedance of the relay associated with IEDs of the given
power system dataset comprising of infinite values and should
be removed. However, in our proposed methodology, the top

15 features of any of the sets does not rely on impedance
of relay attribute such as RI1:PA:Z, R2:PA:Z, R3:PA:Z and
R4:PA:Z. Hence we are essentially not deleting any row
records of the given dataset.

Proper sanitization converts the type of the features from
nominal to numeric which makes a huge impact in taking
decision to classify the events of the given dataset by various
classifiers. To demonstrate the impact of preprocessing and
feature selection we have computed the results with and
without preprocessing and with and without feature selection
by applying all the eight decision-tree based classifiers on the
power system dataset as mentioned in Table

The first two columns represent the accuracy and execution
speed computed by eight decision-tree based classifiers with-
out applying pre-processing on the dataset. In this case, all
the classifiers have failed to achieve high accuracy and better
execution speed because in order to predict the outcome, the
classifier applies the modeling algorithm on both numerical
and categorical inputs. At each iteration the decision-tree
makes the decision by considering both the type of data in
the dataset,that results in a long prediction time and low
accuracy rate. Hence, proper sanitizing is the primary step
for the classification.

Table VIII

Comparative analysis of various tree-based classifiers based on pre-processing
and feature selection methodology

Algorithm Cl W/o Pre-Proc W Pre-Proc 15 features
Acc Exssp  Acc Ex.sp  Acc Ex.sp
(%) Sec (%) Sec (%) Sec
XgBoost 2 71.14 814 9623 346 97.21 1.98
GB 2 70.21 729 9568 334 9680 1.16
RF 3 7266 853 9501 535 96.18 147
ADA-RF 3 73.16 894 95.68 622 96.18 2.14
CVR-RF 7 59.22 998 9320 836 9442 5.14
J48 7 36.81 121 8734 090 89.10 0.30
RT 37 2773 035 8825 0.1 90.01 0.04
ADA-RT 37 2722 057 89.12 0.12 9022  0.06

In contrast, the third and forth columns of the table repre-
sents the results computed by the eight classifiers by applying
proper pre-processing on the entire dataset of 128 features.
The pre-processing includes feature mapping, feature normal-
ization and feature encoding techniques which improves the
accuracy and execution speed.

Finally, we have combined pre-processing with feature
selection to select the fifteen most promising features from
the dataset before applying the classifier, which not only
improves the accuracy but also improves the execution time.
In a nutshell, our approach combines both pre-processing and
feature selection, which has proven best amongst all the three
approaches for all the decision-tree based classifiers.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a GBFS based feature selection ap-
proach to identify the most promising features for anomaly
detection in power grids. The overall framework consists of
three key components. Initially, during data preprocessing,



the features are mapped and scaled to a specific range.
To accelerate the execution speed and learning efficiency, a
GBFS based feature selection approach is applied on filtered
data to compute the most promising features from the entire
dataset dynamically according to network/SCADA traffic. The
dynamic approach of selecting the features from the entire
dataset hides largely all the sensitive information of the power
grid system. Finally, these reconstructed datasets are used by
decision-tree based algorithms that classify the various attacks
and normal events. The experimental results reveal the effi-
ciency of the framework in terms of accuracy, detection rate,
miss rate and execution speed compared to the original dataset.
Moreover, the proposed GBFS based model outperforms some
state-of-the-art techniques described in published works.

In the future, we plan to extend this work by combining the
results of several classifiers to achieve an accurate outcome
by applying majority vote ensemble method. This method
predicts the output label based on the majority of the output
labels predicted by each classifier. This will further improve
the efficiency of the prediction and provides the most accurate
output label in terms of normal and attack events. We will
target various classifiers, namely, Random Forest, Gradient
Boosting, XGBoost, Artificial Neural Network, Naive Base,
and Decision Table for ensemble learning by referring to
preliminary results from this paper. This approach will help to
generate a better predicting model compared to a single model
using “hard voting” based majority rule ensemble technique.
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