
Toward Semi-Supervised Classification of
Underwater Benthic Habitat Imagery
Isaac Xu

Faculty of Computer Science
Dalhousie University

Halifax, Canada
isaac.xu@dal.ca

Thomas Trappenberg
Faculty of Computer Science

Dalhousie University
Halifax, Canada

tt@cs.dal.ca

Scott C. Lowe
Faculty of Computer Science

Dalhousie University
Halifax, Canada
scott.lowe@dal.ca

Abstract—As part of the Benthic Ecosystem Mapping and
Engagement (BEcoME) project, we are working toward au-
tomating underwater image classification using modern semi-
supervised learning approaches. To begin this work, we tested
the Bootstrap Your Own Latent (BYOL) model on the well known
MNIST dataset. Our interest is in datasets where only a minority
of the samples are labelled, a problem typical for many real
world datasets, which we simulated by redacting the labels from
part of the MNIST dataset. We find that the semi-supervised
methodology is more resilient against a decrease in the number
of labelled training samples than a fully-supervised model trained
only on the labelled images. When very few of the samples were
labelled (<0.8%), there is an appreciable performance advantage
to the semi-supervised models when compared with a purely
supervised model.

Index Terms—machine learning, artificial intelligence, neural
networks, semi-supervised learning, image classification, under-
water imagery

I. INTRODUCTION

Benthic habitats are seafloor environments which are rep-
resentative of the diverse and sensitive nature of underwater
ecologies [1]. Benthic habitat mapping is then the process of
determining the locations and spatial extent of such seafloor
landscapes. It is a vital process in understanding the impacts
of human activity and climate change on such habitats and
assessing how best to manage and preserve fragile ocean
ecosystems. During the benthic habitat mapping process, un-
derwater images of the ocean floor are collected and manually
annotated by expert ocean scientists. This annotation step is
the most time-consuming (and least intellectually stimulating)
stage of the habitat mapping pipeline. As part of the Benthic
Ecosystem Mapping and Engagement (BEcoME) project1,
funded by Ocean Frontier Institute, we are working to use
machine learning techniques to help automate this process.

Underwater images of the seafloor can be collected for
many reasons, and only a small fraction of these images are
annotated with a habitat classification by marine scientists. The
problem at hand is that the limited amount of labelled data is
often insufficient to train a reasonably performing supervised
model. Since there exist large datasets of unlabelled images
that are readily available, a logical approach is thus to harness

1https://www.ofibecome.org/

this unlabelled data when training our model. One approach in
addressing this problem is to utilize self-supervised learning.

Recent advancements in self-supervised learning have led
to the creation of models which can match the performance
of fully supervised models on large-scale image classification
tasks [2] [3] [4]. Additionally, some methods such as Bootstrap
Your Own Latent (BYOL), which is the method chosen in this
paper, use an approach that does not require negative samples.
This approach simplifies the learning process, enabling train-
ing with smaller batch sizes that can be deployed within our
computational constraints [4].

Our goal is to collate a large body of seafloor imagery that
is publicly available on the web and train a large model on this
dataset using self-supervised learning. We will then fine-tune
this model by training on the significantly smaller labelled
dataset to yield a classification model. We expect this will
produce a model which performs well and can generalize much
better than a model trained solely on the available labelled
data.

Currently, we are collecting the data to fuel this model
by harvesting publicly available datasets and soliciting con-
tributions from collaborators. Meanwhile, we have deployed
a BYOL [4] model on the MNIST dataset [5] to evaluate its
effectiveness. The MNIST dataset was chosen for its simplicity
and familiarity, allowing for an example dataset to which we
can quickly modify and test models for. The goal here is
to understand how BYOL performance begins to deteriorate
with gradually decreasing numbers of labelled data samples,
thus establishing a clearer idea of both the model’s limitations
as well as its comparative performance to that of supervised
learning.

II. RELATED WORKS

The original BYOL paper [4] contains fine-tuning compar-
isons of BYOL against SimCLR [2] and supervised learning
on the ImageNet dataset. The group compared representations
over 1%, 2%, 5%, 10%, 20%, 50% and 100% of data. Accord-
ing to their testing, BYOL outperformed the alternative models
at every stage. In our experiment, we are largely seeking to
reproduce and confirm BYOL’s performance capability. This
understanding of the model we obtain would be necessary for
our eventual implementation of it for the BEcoME dataset.

https://www.ofibecome.org/


Another point of interest is in the trend and deterioration
of BYOL’s linear projection performance when compared to
that of supervised learning. While it is not the primary focus
of this paper, when graphed against number of labelled data
samples, we believe that the location of the intersect between
a semi-supervised linear projection performance and that of
supervised learning provides an indicator of the classification
difficulty for a particular dataset. A standardized model using
such a metric would be useful in providing an intuition for how
well a model should be expected to perform at classifying this
specific dataset.

III. METHODS

The BYOL model [4] uses two asymmetric architectures
known as online and target models. The online model consists
of a convolutional neural network (CNN) encoder as well as a
multi-layer perceptron (MLP) projector and a MLP predictor.
The target model has only the encoder and the projector, which
take their weights as the exponential moving average (EMA)
of those from the online model. The core concept behind
BYOL is to train an online model capable of predicting the
embedding vector generated by the target model when they are
each presented with differently augmented samples of the same
image. We initially attempted to examine how BYOL would
perform as we limited the amount of labelled data available
for fine-tuning. Our goal was to estimate BYOL’s performance
when subjected to constraints in real world datasets such as
our underwater imagery data.

Our BYOL implementation was implemented in PyTorch
[6]. As described above, there are three main parts to the
BYOL model: an encoder, a MLP structure (used for the
projector and predictors) and finally a classifier, which is a
single linear layer.

The encoder is made up of of six convolutional blocks
each consisting of a 2-D convolution with a 3×3 kernel with
“same” padding, batch normalization, and activation with a
rectified linear unit (ReLU). We downsample with a stride of
two on every alternative convolutional layer. Finally, we take
the average of each of the feature maps across 256 output
channels in the form of a global average pooling layer [7].

The projector and predictors both consist of two linear
layers, with batch normalization and ReLU activation in-
between. Finally, the classifier consists of a single linear layer
and a softmax output. The full network architecture is shown
in Figure 1.

For the first part of our experimentation with MNIST, we
trained the network on the full 60,000 MNIST dataset for
5 epochs using self-supervised learning. Although we used
augmentations such a random crop and Gaussian blurring such
as those used in SimCLR [2], we could not use SimCLR’s
colour-based augmentations due to the greyscale nature of
MNIST images. The online and target networks are fed two
such independently augmented copies of the same image
sample. We use cosine similarity with the embedding vector of
the target model as the utility function for evaluating the online
model’s output. For symmetry, the two augmented images are

Fig. 1. Network architecture. The encoder maps an input image to a size 256
embedding space. It does so by gradually expanding the number of channels
and downsampling the image by 1/2 on odd-numbered convolutional blocks.
The projector and classifier are then compatible with the size 256 vector
outputted by the encoder and map it to a size 16 vector or a size 10 softmax
vector respectively. Finally, the predictor is intended to stack on top of the
projector and therefore maps a size 16 vector to another size 16 vector after
processing through its hidden layer.

presented both ways around. The cosine similarity is measured
for each presentation, summed, and and negated to provide
our loss function, which is backpropagated through the online
network. The online network is updated using the Adam [8]
optimizer, with a momentum of 0.9, weight decay 1.5×10−6

and learning rate 0.01. The target model is not updated by the
backpropagation step; this is instead updated after each batch
to be the EMA of the encoder and projector weights from the
online model.

After the self-supervised training process, we discard the
projector and predictor and keep only the trained encoder
module. This network is used to initialize our classifier model.

We compare four classifier training methods: fully-
supervised (Sup.), linear projection (Linear Probe), fine-tuning
(Fine Tune), and transfer learning (Trans.). When training
these models on the labelled partition of the dataset, we used
the Adam optimizer with the same parameters described above
for the self-supervised training step, except for the learning
rate, which was reduced to 0.001 Our fully-supervised learning
consisted of training an identical encoder-classifier architecture
from scratch on the labelled dataset only. This model serves
as a baseline to compare our other experiments against. The
linear projection model was built by adding a single trainable



linear layer on top of the pre-trained encoder from the self-
supervision step. The fine-tuning approach was to take the
output from the linear projection model, unfreeze the encoder
and train the whole network with a reduced learning rate of
0.0001. Finally, our transfer learning model was initialized by
taking the trained encoder, adding an untrained linear layer,
and training the entire model.

We performed experiments with a varying number of la-
belled data available for the models (60,000, 6,000, 600, 500,
400, 300, 200, 150, or 100 images). Because the number of
iterations per epoch decreases as the dataset size shrinks, we
increased the number of epochs as the number of labelled
images was reduced. These models were tested for 40, 100,
500, 600, 750, 900, 1050, 1250, and 1500 epochs, respec-
tively. The number of epochs for each set of labelled images
was determined through some experimentation and set to be
approximately where the accuracy of the model had largely
peaked.

IV. RESULTS

As shown in Figure 2, the performance of all models de-
crease as the number of labelled samples decreases. However,
the transfer learning (Trans.) and fine-tuning (Fine Tune) mod-
els decrease in performance slower than the fully-supervised
(Sup.) model. The linear projection (Linear Probe) model also
decreases in performance at a slower rate, but has generally
lower accuracy than the other models. With large datasets, it
is difficult to discern any difference in performance between
the supervised learning, transfer learning, and fine-tuning
models, but a gap between the models becomes clear with 400
(0.7%) or fewer labelled images. Although the general trend
and proof-of-concept for the model can be established, more
trials would be required to obtain a statistically significant
understanding of the nuances between these models.

TABLE I
ACCURACY OF MODELS. WE REPORT THE TEST ACCURACY WHILE

REDUCING THE NUMBER OF LABELLED TRAINING SAMPLES.

Test accuracy (%)
Num. labelled Epochs Sup. Linear Probe Fine Tune Trans.

60,000 40 98.82 87.77 98.80 99.23
6,000 100 98.06 86.90 96.79 98.26

600 500 93.77 70.54 92.89 93.46
500 600 94.28 72.76 92.29 93.71
400 750 90.67 80.32 93.26 92.72
300 900 90.92 74.77 92.27 93.21
200 1,050 84.23 71.31 88.48 90.31
150 1,250 80.77 68.35 84.83 88.15
100 1,500 68.24 68.67 83.47 83.08

V. DISCUSSION

Our expectations are that given a large labelled dataset,
semi-supervised learning would be comparable to that of
fully supervised-learning. More interesting is the point at
which semi-supervised training significantly surpasses super-
vised learning. For our experiments on MNIST, this threshold
appears to be around 400–500 labelled images or 0.6% to

Fig. 2. Model performance. Classification accuracy against the number of
labelled images used for training. Performance for models initialized with a
self-supervised model (Linear Prob, Fine Tune and Trans.) decrease slower
than the fully supervised model (Sup.).

0.8% of the 60,000 self-supervised samples. Previous work
has found that a semi-supervised BYOL model was able
to surpass a fully-supervised model on ImageNet when the
labelled dataset was 10% of the samples (120k images) [4].
This begs the question of why our experiments with MNIST
appear to have a lower threshold for surpassing supervised
learning when compared to the ImageNet experiments in the
original paper. One possibility for such a large difference in the
effect of labelled data size may be due the relative difficulty
of the classification task. Because MNIST is an easier dataset
to classify (a model does not need many examples to learn
to classify digits), the representational learning conducted by
the semi-supervised approach did not provide a noticeable
advantage until the training samples were significantly re-
duced. In this sense, comparing supervised learning with semi-
supervised techniques may act as an empirical and de facto
method for assessing the difficulty of a particular classification
task.

Another interesting point is the fact that while transfer
learning and fine-tuning highlight the effectiveness of learned
self-supervised representations, the linear probe highlights its
limitations. From this observation, it seems that although
the learned embedding provides a strong starting point for
the model, it is relatively insufficient by itself. One possible
reason for this may be that the augmentations we applied
were not sufficiently challenging for the model, and the model
may have solved the problem with a short-cut that did not
require it to learn a strong embedding space. Indeed, SimCLR
discovered that colour augmentations were the most important
augmentation for RGB images [2], with a large decrease in
performance if they were not present. Since MNIST data
is greyscale, we were unable to use augmentations across
the colour channels. Alternative augmentations we could try
include contrasting and brightening, which can be performed
by offsetting and scaling the normalized intensity values, or
inverting the image. Furthermore, as stated in [2], additional



augmentations such as Sobel filtering or motion blurring could
also benefit the learned encodings, as these were found to
improve results with ResNet-50 models on ImageNet.

In general, there appears to be noticeable benefits to a semi-
supervised approach for datasets with limited labelled samples.
There are many directions to proceed from the results demon-
strated here. We would be interested in looking at how class
imbalance could impact semi-supervised methods. Another
project of interest could be to establish a metric of how difficult
a classification task may be, through tested performances with
semi-supervised and supervised approaches. Ultimately, we
hope to apply the lessons learned here towards achieving better
results in the classification of underwater imagery as part of
the BEcoME project.

REFERENCES

[1] P. T. Harris and E. K. Baker, “1 - why map benthic habitats?” in Seafloor
Geomorphology as Benthic Habitat, P. T. Harris and E. K. Baker,
Eds. London: Elsevier, 2012, pp. 3–22. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123851406000013

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” 2020.

[3] X. Chen and K. He, “Exploring simple siamese representation learning,”
2020.

[4] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent:
A new approach to self-supervised learning,” 2020.

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[7] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2014.
[8] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2017.

https://www.sciencedirect.com/science/article/pii/B9780123851406000013
https://www.sciencedirect.com/science/article/pii/B9780123851406000013

	Introduction
	Related Works
	Methods
	Results
	Discussion
	References

