Novel Approaches to Marker Gene Representation
Learning Using Trained Tokenizers and Jointly
Trained Transformer Models

1%t Alexander Manuele
Computer Science)
Dalhousie University
Halifax, Canada
al366886@dal.ca

Abstract—Next-generation DNA sequencing technologies have
made DNA sequence data far more widely available, opening new
avenues of research. Analysis of marker gene data sets has many
shortcomings, including sparsity, high cardinality, and intra-
study dependencies during feature engineering. We present two
novel approaches to feature representation of DNA marker gene
data, first showing that trained tokenizers can replace traditional
sliding-window based segmentation techniques, then proposing a
training scheme to learn dense-vector representations of DNA
sequences using transformer language models. We demonstrate
that our representations match or exceed previously published
approaches while providing fixed-length, low cardinality repre-
sentations.

Index Terms—representation learning, DNA, transformer, lan-
guage modelling, microbiome

I. INTRODUCTION
A. Marker gene analysis

The ribosomal rRNA 16S gene serves as a marker gene for
analysis of prokaryotic microbes. The microbial diversity of
an environment (i.e. the microbiome) is often characterized via
high-throughput sequencing of the 16S gene, using differences
in the gene sequences to determine the species present in a
sample and their abundances [1]. It is increasingly common
to apply machine learning techniques to these data, either
to characterize the individual sequences or to characterize
the collection of sequences that makes up a sample as a
whole. Modelling individual DNA sequences is usually done
by chunking a sequence into overlapping segments of length &,
called k-mers. Sequences are then classified by counting the k-
mers that appear per sequence and modelling the count vectors
[2] [3]. Similarly, collections of sequences that comprise
environmental samples can be classified by creating count
vectors of the denoised or clustered unique sequences present
in the sample [4] [5] [6] [1]. Each of these representations
have severe shortcomings, however: k-mer count modelling
produces high-dimensional, sparse data which provide no
context or distance information. Microbiome sample count-
vectors perform well but their cardinality relies on the unique
organisms identified in a group of samples, preventing the use
of trained models across studies.
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B. Previous work

Some researchers have sought to address the shortcomings
of k-mer count representations for sequences, showing that
neural language models can be trained to create dense-vector
representations of k-mers [7] [8] [9]. Specifically for 16S
marker genes, [8] went further, showing that the dense-vector
representations of the k-mers in a sequence can be aggregated
to form dense-vector representations of the full sequence.

C. Contributions

We investigate two trained tokenization strategies for tok-
enizing 16S marker genes into non-overlapping tokens, byte-
pair encoding (BPE) and unigram language modelling, and
show that we can achieve significant compression of sequences
without loss of performance in down-stream tasks. Having
shown that we can use these strategies to effectively represent
16S sequences, we train a transformer encoder to model BPE
encoded 16S sequences using a masked-language modelling
task. We subsequently fine-tune the pre-trained transformer
to produce fixed-length, dense-vector representations of 16S
sequences which outperform the previously published method
in all metrics tested. We show that our dense-vector sequence
representations can be used for classification, clustering, and
nearest-sequence lookup. Finally, we show that we can encode
all the sequences comprising a microbial community sam-
ple and aggregate them to produce fixed-length dense-vector
representations of samples without any loss in classification
accuracy vs canonical count-based classification methods.

II. TRAINED MARKER GENE TOKENIZERS COMPRESS
SEQUENCES WITHOUT LOSS OF PERFORMANCE IN
DOWNSTREAM TASKS

We investigate BPE and unigram trained tokenizers as an
alternative to k-mer tokenization for 16S DNA sequences.
We find that using BPE or unigram tokens results in an
approximately 7 fold reduction in sequence length due to the
use of non-overlapping tokens and the collapse of conserved
DNA regions into single tokens (Fig 1).
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Fig. 1. Sequence lengths in n tokens of 410,078 tokenized 16S DNA

sequences using k-mer (blue), byte-pair encoding (orange), and unigram
language modelling (green) with vocabulary sizes of 4% and 48.

We classify 16S sequences using k-mer, BPE, and unigram
token count vectors. We find that BPE and unigram token
representations are more sensitive to machine learning model
classification but that there is no significant difference in the
best performance from each representation, showing that the
reduction of sequence length from trained tokenizers is not a
trade-off.

III. TRAINED TOKENS CAN REPLACE k-MERS FOR
REPRESENTATION LEARNING

We recreate the 16S DNA sequence embedding described
by [8]. Their model uses a two step process; first, they
train a word embedding algorithm to project DNA k-mers to
continuous d-dimensional vector space. Then, they produce
sequence level d-dimensional vector representations by using
a normalized averaging procedure of the k-mer vectors from
k-mers found in a sequence.

We repeat the procedure described by [8] using k-mers, BPE
tokens, and unigram tokens as the word units for projection to
d-dimensional vector space. We note that the reduced sequence
length from BPE and unigram tokenization strategies results
in ~ 10 fold reduction in training time of the word embedding
model. We perform taxonomic classification and clustering
using each feature representation and find no significant dif-
ference in performance between token strategies in any metric.
We conclude that the reduction in training time coupled with
the homeostatic performance metrics suggests that BPE and
unigram tokenization are preferable for representation learning
tasks to k-mer tokenization.

IV. TRANSFORMER LANGUAGE MODELS CAN BE FINE
TUNED TO PRODUCE HIGH QUALITY 16S GENE
EMBEDDINGS

Bidirectional transformer architectures (also known as trans-
former encoders) can be pre-trained using large, un-annotated
data sets using unsupervised training objectives and subse-
quently fine-tuned for several applications [10] [11]. One

such fine-tuning application is the ability to train the model
to produce dense-vector representations of text sequences by
training the model using sequence pairs annotated with a
similarity score [12].

Using a large corpus of BPE tokenized 16S DNA sequences,
we pre-train a bidirectional transformer model using the
masked-language model training objective [13]. Subsequently,
we create a corpus of annotated sequence pairs, annotating
pairs of 16S sequences with pairwise alignment scores using
VSEARCH [14]. We add a pooling layer to the pre-trained
transformer model, thusly configuring it to produced dense-
vector outputs from input sequences. We then fine-tune the
model to minimize the mean squared error between cosine
similarity of sequence embeddings and pairwise alignment
score of the corresponding sequences.

This fine tuning process results in a model which cre-
ates high-quality fixed-length dense-vector representations of
variable length 16S sequence inputs. We show that these se-
quence embeddings can be used for fast approximate nearest-
sequence lookup, finding that nearest-vector lookup using
cosine similarity scores overlap significantly with nearest-
sequence lookup using the de facto gold standard biological
sequence search algorithm, BLAST [15].

We compare our sequence embedding method against the
method published by [8]. We find that our embeddings produce
higher quality clusters when clustering sequences to different
ranks in taxonomic hierarchy and have a much higher Spear-
man rank correlation coefficient between cosine similarities
and pairwise alignment, both metrics which were reported
in [8]. We find that both our embedding method and the
previously published method classify 16S sequences with
excellent performance. We note that unlike the previously
published method, which relies on statistics calculated over
a corpus of sequences, our embedding method produces high
quality dense-vector representations using only the information
contained in an individual sequence.

V. TRAINED SEQUENCE EMBEDDINGS CAN BE
AGGREGATED TO FORM FIXED-LENGTH REPRESENTATIONS
OF MICROBIOME DATA

Microbiome data samples are typically represented as count
vectors with entries corresponding to the number of sequence
units identified in the sample. The canonical method for
performing machine learning classification of these data is to
use log-ratio transformations of these count vectors as features
[16] [4]. The cardinality of these count vectors is determined
by the study from which the data originated, as the counts
reference all sequence units identified across a study [4]. We
address this shortcoming by using aggregations of our dense-
vector sequence representations to produce sample level dense-
vector representations. We propose that microbiome samples
can be represented as dense-vectors by simply calculating
weighted averages of the embeddings of representative se-
quences in a sample, using centered log-ratio transformed
sequence counts as the weights.



We acquire data sets from five microbiome studies with
binary classification objectives. For each data set, we train a
random forest classifier to predict the classification target using
canonical methods (i.e. centered log-ratio transformation of the
sequence count vectors) and our proposed feature representa-
tion method of aggregated sequence embeddings. Our method
provides the advantages of fixed-length representations and
significantly reduced feature cardinality. We find that in four
of the five data sets, our method does not perform significantly
differently than the canonical method and that in the fifth data
set our method performs significantly better (table I).

TABLE 1
CLASSIFICATION OF DISEASE STATE FROM STOOL MICROBIOTA SAMPLES
Study | ROC (Abundance CLR) | ROC (Embedding) | p-value
IBD 0.770 +/- 0.134 0.753 +/- 0.202 0.843
HIV 0.957 +/- 0.055 0.930 +/- 0.058 0.475
CRC1 0.754 +/- 0.143 0.606 +/- 0.207 0.230
ASD 0.581 +/- 0.058 0.755 +/- 0.027 0.001
CRC2 0.456 +/- 0.099 0.511 +/- 0.125 0.466

VI. CONCLUSION

To our knowledge, we are the first researchers to investigate
the properties and viability of byte-pair encoding or unigram
language modelling for tokenizing DNA sequences. We have
shown that either representation can replace k-mer representa-
tion in classification and language modelling tasks, providing
researchers with the advantages of reduced sequence length
and controllable vocabulary size.

We extend the state of the art of DNA marker gene embed-
ding, creating 16S sequence embeddings which outperform the
previously published method in several metrics. Our method
performs as well or better than the previously published
method without the need to calculate data set-wide statistics
for embedding calculations.

Finally, we show that our sequence embeddings can be
used to create fixed-length dense-vector representations of
microbiome data samples. The ability to represent microbiome
data with a fixed-length representation that is not dependant
on study level meta data and statistics is an essential develop-
ment towards the creation of production-ready host phenotype
prediction models.
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