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Abstract—Tangled Program Graphs (TPGs), a modular genetic
programming algorithm, has been shown in the past to perform
well in reinforcement learning environments which assume dis-
crete actions (e.g. Atari console games). It is the goal of this
research to expand the capability of TPG into the continuous
control domain, where real valued actions are required, as well as
to showcase the potential of using real valued action generation to
aid in discrete action tasks. In addition to giving TPG real value
capabilities, we also explore the impact of diversity maintenance
through occasionally introducing new genetic material for TPG
to work with during evolution, as well as a method of ”speeding
up” evolution through repeated mutations with a process called
rampancy. With this in mind, a 2D bipedal walker control task
will be assumed in which multiple real-valued control actions
have to be specified per state, as well as 3D tasks through
ViZDoom which accepts discrete actions.

Index Terms—genetic programming, reinforcement learning,
complex control

I. INTRODUCTION

A. Overview

In previous work, TPG has always made use of discrete
actions [6]–[8], [16], [17]. This limits the environments in
which TPG can act to those that accept exclusively discrete
actions. Attempting to replace real-valued actions with discrete
values (discretization) results in too many discrete actions
(i.e. an example of the curse of dimensionality). In this work
an implementation of TPG is showcased that is capable of
producing a vector of real valued actions of arbitrary size.1

This paper also explores the impact of methods of diversity
maintenance on a TPG population. The primary motivation
for this is that in prior experiments, TPG tends to lose
diversity without explicitly working diversity maintenance into
evolution. This is a problem because as diversity decreases,
the amount of possible directions in which a population can
search is reduced, increasing the risk of being trapped in a

1https://github.com/Ryan-Amaral/PyTPG/tree/new-tpg is used in the
bipedal walker task, another implementation in Java is used for the ViZDoom
tasks.

local minima (or an example of the exploration-exploitation
trade-off).

One proposed method of diversity maintenance (as a contri-
bution of this work) is to occasionally evolve a sub-population
of Symbiotic Bid Based (SBB) individuals, of which some
elite SBB individuals will be integrated into the TPG popula-
tion. SBB is a pre-cursor to TPG in which candidate solutions
may only take the form of single teams of programs. TPG
generalizes this to the self-organization of graphs of teams of
programs. Having these SBB individuals introduced into TPG
provides new genetic material, increasing diversity.

Rampancy will also be discussed, which is a method of
repeating mutations in a controlled fashion in order to create
greater differences between original and newly mutated indi-
viduals.

B. Outline

The rest of this paper is organized as follows: First, sec-
tion II Background will introduce the concepts of reinforce-
ment learning, genetic programming, evolutionary algorithms,
SBB, and TPG. Following that in section III we describe
some previous works making use of ViZDoom and bipedal
walking environments. After that, the method of producing
real valued actions in TPG in this work will be introduced
in section IV Real Valued Tangled Program Graphs. Next
section V Diversity Maintenance introduces the concepts used
to increase the level of diversity in TPG, namely intermittent
SBB subpopulations and rampancy. Section VI ViZDoom
Experiments and section VII Bipedal Walker Experiments
describe the experiment setup and results for each experiment
set. This is all followed by the Conclusion, summarizing the
work and discussing limitations and future directions to take
this work.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) is a type of Machine Learning
(ML) algorithm, where a given problem is posed as an



interaction between an agent (instance of an ML algorithm)
and an environment [18].

The environment first produces an observation, the repre-
sentation of the current state of the environment (st). The
agent takes this observation to produce an action (at). The
environment is then updated based on the action, producing a
new observation for the agent to use (st+1). In addition to each
observation, the agent also gets a reward based on the current
state of the environment (rt+1). The ultimate goal of the agent
is to maximize total cumulative reward or

∑
t=1 rt. Thus, an

episode is the full set of interactions with the environment,
from the start state (t = 0) to the last (t = n), when the
environment ends and a terminal reward is received by the
agent.

Often in RL, results of an agent are averaged over multiple
episodes. Overall results are often reported as the mean per-
formance over multiple runs with the same parameterizations
(often displaying the standard deviation as well).

B. Genetic Programming

Genetic Programming (GP) is a type of ML algorithm based
roughly on how genes behave in biological evolution [5]. GP’s
can be composed in different structures, in this work we use
what is called linear GP [1].

In linear GP, individuals are represented as sequences of
instructions, along with a set of registers that the program
can make use of to store intermediary or final results. The
register values are also used as return values when executing
a program, for example just returning the value stored in the
first register after execution for a single real valued output.
Programs have progregs registers.

Each instruction (as used in all algorithms in this work) is
comprised of four components, a mode, operation, destination,
and source. The mode represents whether the instruction will
take an input from the environment’s observation or from one
of its registers, it is Boolean valued. The operation selects
a single math operation (from a finite set of operations) to
perform on the value currently stored in the output register
and/or the input. The destination represents which register to
store the result of the given instruction in, and can take on a
value up to progregs. The source is the index in the observation
or register set to pull a value from, this value can range up to
max(size(observation), progregs).

Marking the value in the destination register as x and the
value as specified by source and mode as y, the following
are all of the operations used in all algorithms in this work
(op set): x+y, x−y, x×y, x÷y (only if y 6= 0), x = x×−1
(only if x > y), and cos(y).

To mutate a program, 4 parameters are used: instdel,
instadd, instswp, instmut. Each representing the probability
to delete an instruction, add an instruction, swap two instruc-
tions, and mutate an instruction, respectively. Mutating an
instruction changes one of its components to any other value
within the valid range. In this work programs have a max size
during initialization (progmaxInit), but through mutation there
are no limits aside from being at-least one instruction long.

C. Evolutionary Algorithms

GP is typically used with an Evolutionary Algorithm (EA),
which itself is roughly based on biological evolution [4]. The
general process of an EA is shown in Algorithm 1, which is
used with all of the algorithms tested in this work.

This specific formulation represents a ‘breeder’ in which
all individuals have their performance evaluated and then
the worst performing gap portion of individuals are deleted.
Variation operators facilitate adding back the gap portion
(based on a fixed target population size) of new individuals
through a process that inherits material from the 1 − gap
portion of survivors. G represents the number of generations to
run evolution for, N is the population size, gap represents the
portion of the population to delete (and add) each generation,
and e is the number of episodes to run each agent for. Regard-
less of algorithm used (e.g. GP, neural network), the general
flow remains the same. There are many more parameters that
may be needed based on what algorithm is being used.

Algorithm 1 EvolutionaryAlgorithm: Performs evolution of a
population in an environment.
INPUT: Evolutionary parameters (e.g. G,N, gap, e, mutation
parameters).
OUTPUT: Varies, could be the set of 1 − gap individuals
representing the survivors at generation G or the single best
performing individual.

1) pop = InitializeRandomPopulation(size = N)
2) For (g In 1..G)
3) For (individual In pop)
4) individual.fitness = Perform(individual, e)
5) survivors = GetF ittest(from = pop, portion =

1− gap)
6) pop = survivors
7) For (i In 1..(N × gap))
8) child = CloneRandomSurvivor(survivors)
9) child.Mutate(mutateParams)

10) pop.Add(child)

D. Symbiotic Bid Based Genetic Programming

Symbiotic Bid Based (SBB) GP is a GP algorithm, where
multiple programs are grouped together in what is called a
team [12]. Each program has a fixed action associated with
it, historically, a single discrete action. These programs are no
longer used to provide the (real valued) actions directly, but
are instead used to ”bid” on which program should have its
action used (the action being fixed, typically integer valued).
So unlike plain GP, SBB is relegated to tasks which require
only discrete actions, aside from potential discretization of real
valued action spaces (an approach that does not scale).

There is a type of SBB called hierarchical SBB, in which
SBB is grown in layers, each layer using the previous layers
as potential actions [3], [9]. 1-layer hierarchical SBB would
be comprised of teams whose programs only refer to discrete
atomic actions. 2-layer hierarchical SBB would be comprised



of teams whose programs only refer to 1-layer hierarchical
SBB individuals. Each layer would be evolved in distinct
phases. In the top most level each team is referred to as a root-
team, only the root-teams count as agents to an environment.

When evolution starts, teams are created one by one. Each
team is given at-least teammin learners, each with randomly
generated programs and atomic actions (or team actions if a
higher layer of SBB). These initial teams will have between
teammin and teammaxInit learners, selected uniformly.

Throughout evolution, at each generation, all of the root-
teams are eligible to be cloned into a new individual. The
newly cloned individual will initially share all of the same
learners as the parent before mutation. The variables lrnrdel,
lrnradd, and lrnrmut define the probability of learner dele-
tion, addition, and mutation, respectively.

First learner deletion happens, a learner is deleted with prob-
ability lrnrdel, if that is successful (and other conditions are
met), another learner gets deleted with probability lrnrdel

2,
and so on (with probability lrnrdel

3...). Deletion can happen
as long as there are more than max(2, teammin) learners.

Learner addition then follows the same pattern as learner
deletion. Any learner in the entire population (of the current
layer) can be added to a team provided that the learner
is not already in the team. Learners can be added without
restriction to team size unless teammax is defined, which sets
the maximum number of learners a team can have.

Then learner mutation happens. Each learner is given
lrnrmut probability to mutate. When a learner mutates, both
the program and the action have a chance of mutating, based
on progmut and actmut respectively, at-least one of these must
occur. An action is mutated by swapping out the current action
for an eligible one, either a random (different) discrete action
if a first layer SBB, or a (different) team from the previous
layer for higher layers of SBB.

Execution starts at a root-team, a team of the highest current
layer. Each of that team’s programs bid, the highest bidder
has its action selected. If that action is another team, the same
process is repeated on that team. If that action is an atomic
action, that value is returned as the action.

E. Tangled Program Graphs

Tangled Program Graphs (TPG’s) are very similar to hier-
archical SBB, any SBB individual is a valid TPG individual.
Unlike hierarchical SBB, TPG is not evolved in distinct
phases, and it is also capable of having learners’ actions be
teams of any ”layer” (the concept of layers doesn’t matter to
TPG). TPG thus produces graphs with arbitrary links, as the
term ”tangled” suggests.

When a TPG population initializes, teams are created just
like in SBB. Mutation and execution are different.

Being composed as a graph rather than a tree (as in SBB)
could possibly introduce infinite loops during execution. This
is overcome by not allowing the same team to be visited
more than once in each environment interaction, as well as
by ensuring that each team has at-least one learner with an
atomic action. When adding learners during team mutation,

an additional constraint is that an added learner must not have
its action be a team action that refers to the team itself (the
team being currently mutated).

Additional changes are made to the learner mutation pro-
cess. The variable actatom is added, representing the prob-
ability that when a learner’s action mutates, it becomes an
atomic action (vs a team action). If the action mutates into a
team action (whether or not it already was a team action), the
new team cannot be the team that the learner being mutated
belongs to.

During execution, the process is very similar for a TPG
individual when compared to an SBB individual. The only
change is that as each node (team) of the graph is visited
during a given environment interaction, it is added to a list
of visited nodes. Before taking any learners’ team action, the
team is compared to the visited node list, if it is already in the
list then the next best learner’s action is taken (the next learner
following the same constraint). This along with ensuring that
each team has at-least one atomic action satisfies the before
mentioned constraint that each team will not be visited more
than once per action selection, doing away with any possibility
of an infinite loop, and ensures that an action will always be
returned.

III. RELATED WORK

A. ViZDoom

The ViZDoom environment has seen use in competition,
[20], further promoting its use in the research community.
The competition sets machine learning based bots against each
other in ”deathmatches” with the goal of obtaining the most
kills. In the first two iterations of the competition (2016-2017)
submissions all made use of some deep learning architecture
(though a few submissions use unspecified algorithms).

The agents were capable playing the game at a reasonable
skill level, though lacked much strategy and intelligence. For
example, in the 2016 iteration, one solution simply stayed
crouched, and no other agents were used to that so it died
far less often. In addition to this, agents exhibited a lack
of memory by losing track of enemies once they go off
screen. Ultimately, a human skilled at the game was able to
consistently beat the agents.

B. Bipedal Walking

To our knowledge there are no published GP results on the
OpenAI bipedal walker task, which is a major contribution of
this work. However there are results on the task which make
use of neural networks, as well as GP results on different
bipedal walking environments.

For GP results, there is [15] in which the authors evolve
control policies for a 3D bipedal walker task. They use GP
to create a model of the nervous system to sync movement
of the different joints, each joint being controlled by a neural
oscillator model (a basic rhythmic generator). Only up to 4
steps of walking were generated by their model, though this
is a more complex environment then the one used in this work



as it controls 3 times as many joints (12 vs 4) and exists in a
3D environment.

Another bipedal locomotion attempt by [19] also makes
use of GP. This work also makes use of more complex 3D
environments with more joints to control, using two different
environments. In one environment they were capable of ob-
taining slow movement with small steps, much slower than a
human would move. In the other environment the biped was
capable of at-most 2 steps before falling over.

In [13] an older version of the bipedal walker environment
used in this work is used. They compare a method of opti-
mizing neural net weights based on distributions (UMDAc)
to an EA based neural net. In general results showed that
the UMDAc outperformed EA, with UMDAc coming out on
top with a probability of 0.821, though with a relatively large
variance.

Finally, [11] generates symbolic (mathematical) policies by
distilling deep neural nets. These final symbolic policies are
similar to GP programs, in fact depending on the operations
allowed in GP the results could come out exactly the same.
They show that the distilled symbolic policies outperform
other deep learning methods in general by showing that the
average rank of their approach for each task is better than that
of any other approach they tested.

IV. REAL VALUED TANGLED PROGRAM GRAPHS

An implementation of TPG which uses real valued programs
is used in this work, so that discretization of the environment
is not required, to decrease any potential limitation imposed
by a fixed discretization.

This new implementation of TPG produces real valued
actions through action programs, which are the same as any
other program. TPG’s programs have single actions attached
to them, if it’s an atomic action it was previously defined as a
discrete value, this new implementation replaces the discrete
value with a program. An action program is ran when an
atomic action is needed, the values in the registers represents
the output vector.

Action programs have their initial max size defined by
actProgmax init, this value will also be used for GP examples
in this work since GP will only make use of action programs,
no bidding programs. The amount of registers used by action
programs is specified by actProgregs (also used by GP in this
work).

During evolution of TPG with real actions, the only dif-
ference from regular TPG is that when an action is mutated,
in addition to potentially changing the action as a whole (new
program or team), there is a 50% chance of the action program
being mutated.2

This new version of TPG (only as used in the bipedal
walker task) also makes use of a concept called hitchhiker
removal. Every ghh generations hitchhiker removal is ran,

2As happens in the Python implementation which was used in the bipedal
walker task. A different Java version is used for the ViZDoom tasks which
conditionally mutates the action program only if the corresponding bidding
action was first mutated.

which removes any learners attached to any team, if those
learners are never used over the course of an evaluation of
that team on the environment.

V. DIVERSITY MAINTENANCE

A. SBB Sub-Populations

In an effort to improve TPG performance in the bipedal
walker task [2], a method of diversity maintenance making use
of SBB subpopulations is used. A run of this type is referred to
as TPG+SBB. Essentially, there will be a single on-going TPG
population, but every once in a while, an SBB subpopulation
will be evolved, which will have its best individuals integrated
into the TPG population.

When to switch between the TPG population and an SBB
population is decided by either a max number of generations
on the SBB population (Gsbb), or a max number of genera-
tions without improvement (gfail). The TPG population will
continue on without limit to its generations (until completing
the final generation of the run, G), but will trigger the start of
an SBB sub-population when it fails to improve its best fitness
over gfail generations in a row.

B. Rampancy

Another method, rampancy, is used for attempting to in-
crease diversity. Rampancy is used in the mutation process
at the team level, and defines how many times to repeat the
mutation process, to increases changes imposed by mutation.
This method will be used for the bipedal walker and ViZDoom
tasks, and takes places on a per-team basis.

Rampancy is defined as a 3-tuple rampancy =
(freq, rmin, rmax), where freq is how frequently to perform
rampancy in terms of generations, so with freq = 5, rampancy
will take place every 5 generations. rmin and rmax define the
range in which a random number of rampancy iterations will
take place. If rmin and rmax are equal, then rampancy occur
for that many iterations.

VI. VIZDOOM EXPERIMENTS

A. Overview

The ViZDoom platform consists of multiple different en-
vironments, each with similar base mechanics, but different
goals [10]. Four environments are used: Defend the Center,
Defend the Line, Health Gathering, and Take Cover. All envi-
ronments share the same observations space, a 160× 120× 3
RGB image, each component being 8 bits (each colored pixel
consists of 24 bits). The action space and reward differs among
the different environments, which will be specified ahead.

In Defend the Center the agent must survive in a room with
five re-spawnable monsters. The agent can only turn left or
right and shoot, ammo is limited. A reward of 1 is given for
each monster killed, and the episode ends when the agent dies.

Defend the Line is similar to Defend the Center, except the
monsters come back stronger each re-spawn.

In Health Gathering the agent must collect health packs,
and constantly looses life, there are no monsters. The agent
can only move forward and rotate left or right. A reward of 1



TABLE I
PARAMETERS FOR THE TPG VIZDOOM RUNS. ∗ IN THE VERSION OF TPG

USED IN THESE RUNS, LEARNER MUTATION IS ATTEMPTED AS EACH
LEARNER IS ADDED FROM A PARENT TO THE NEW TEAM AND PROGRAM

MUTATION IS ALSO ATTEMPTED BUT NOT GUARANTEED.

Parameter NRAP RAL RAP RAPF RAPS
N 120
G 10,000
gflip 0 3,000 0
gap 0.5
e 5
rampancy (1,5,5)
teammin 12 2
teammax 12 4
teammaxInit 12 2
lrnrdel 0.7
lrnradd 0.7
lrnrmut ?∗

progmut ?∗

actmut 0.2
actatom 0.5
progmaxInit 128
progregs 8
actProgmaxInit 128
actProgregs 7 0 7
instdel 0.5
instadd 0.5
instswp 1.0
instmut 1.0

is given for each frame survived, up to a maximum of 2100
frames.

In Take Cover monsters are spawned in repeatedly and can
shoot projectiles at the player. The agent can only move left
and right. A reward of 1 is given for each frame.

B. Parameterization

Five different TPG run types are considered for the ViZ-
Doom tasks. NRAP (no rampancy, action programs), RAL
(rampancy, action labels (discrete actions)), RAP (rampancy,
action programs), RAPF (same as RAP but doesn’t allow
learners to reference teams until generation 3, 000), RAPS
(same as RAP, but smaller team sizes). TPG is parameterized
as shown in Table I.

C. Results

Results are shown in Figure 1. These are early results, so
how the runs will end up after ten thousand generations is yet
to be seen, though we can observe the early characterizations
of each run type.

In all environments except for Defend the Line, RAL runs
seem to perform poorly relative to the rest, especially in
Defend the Center and Health Gathering. RAL is not too
far below the others in Take Cover, and even on average
outperforms others on Defend the Line, though on these
environments the differences between scores are relatively
minuscule when compared to the other two environments.
This could suggests that action programs provide superior
performance to action labels (discrete actions), though perhaps
only in certain types of tasks.

To assess the impact of Rampancy we can look at NRAP
(no rampancy, action programs) and RAP (rampancy, action
programs) as they only differ in use of rampancy. Though at
this time in the runs not much can be said conclusively about
the difference between the methods.

VII. BIPEDAL WALKER EXPERIMENTS

A. Overview

We use the environment Bipedal-Walker-v3, which is im-
plemented in the Box2D physics engine, and is released as
an OpenAI Gym environment [2]. There is a normal version
which features a relatively flat yet uneven terrain, and a
hardcore version which contains additional obstacles. At this
time, we only have results for the normal version, so those will
be presented. Also finalized runs will contain results from GP,
SBB, TPG, and TPG+SBB. Only the GP and TPG+SBB runs
were finished in time to present in this work.

The action space consists of activity levels of four joints,
two hips and two knees (which a boxy hull/body sits on top
of). The observations space consists of the hull angle, angular
velocity, and horizontal and vertical speeds, the positions
and angular speeds of the four joints, whether each leg is
touching the ground, and ten range finder measurements.
This observation space is extended in our runs by adding
{sin(t)/k | k in 1..3} and {cos(t)/k | k in 1..3}, to further
motivate the adoption of cyclical/sinusoidal motion which has
been shown to be beneficial for bipedal locomotion [14], [19].
This brings the total observation space size to 30. Reward is
given for distance moved forward, -100 points is given if the
agent falls over, and a small penalty is continually applied for
energy use.

B. Parameterization

The specific parameterizations for the GP and TPG+SBB
runs on the bipedal walker runs are shown in Table II.

C. Results

The results throughout evolution for 5 GP and 5 TPG+SBB
runs can be seen in Figures 2 and 3 with the overall mean
and standard deviation of each run type shown in Figure 4. In
the end, TPG+SBB achieves a higher mean performance and
a lower standard deviation.

The final agents obtained from GP and TPG+SBB are
compared in Figure 5 in regards to evaluation over 1000
episodes. Table III shows the mean and standard deviation
obtained by each champion over the evaluation episodes.
The GP agents show a bi-modal distribution due to one
exceptionally well performing champion creating a separate
higher peak. TPG+SBB runs consistently produced champi-
ons capable of high mean scores, however, some champions
performed inconsistently over their one thousand evaluation
episodes, ending up with a slightly higher standard deviation.
Although TPG+SBB produced better performing champions
on average, the single highest performing champion was by
GP with a relatively low standard deviation (GP 4).



(a) Defend the Centre (b) Defend the Line

(c) Health Gathering (d) Take Cover

Fig. 1. Fitness curves during training. NRAP (no rampancy, action programs) in red. RAL (rampancy, action labels) in green. RAP (rampancy, action programs)
in blue. RAPF (rampancy, phase flip) in purple. RAPS (rampancy, small initial teams) in orange.

TABLE II
PARAMETERS FOR THE GP AND TPG+SBB BIPEDAL WALKER RUNS.

Parameter GP TPG+SBB
N 360 360
G 10,000 10,000
gap 0.5 0.5
e 5 5
ghh 100
Gsbb 500
gfail 100
rampancy (5,5,5) (5,5,5)
teammin 2
teammax 4
teammax init 2
lrnrdel 0.3
lrnradd 0.2
lrnrmut 0.7
progmut 0.5
actmut 0.7
actatom 0.8
progmax init 64
progregs 8
actProgmax init 512 64
actProgregs 8 8
instdel 0.5 0.5
instadd 0.5 0.5
instswp 0.5 0.5
instmut 0.5 0.5

0 2000 4000 6000 8000 10000
Generation

0

50

100

150

200

250

300

Fi
tn

es
s

GP Runs

Run 1
Run 2
Run 3
Run 4
Run 5

Fig. 2. GP champion scores throughout evolution of 5 different runs.

It is likely that relatively simple programs are sufficient to
perform well, given that GP alone is capable of performing
so well. This is supported by Figure 6, which shows that
programs used by GP and SBB have roughly the same amount
of instructions. TPG+SBB probably had higher success in
general due to the constant influx of SBB individuals, cre-



0 2000 4000 6000 8000 10000
Generation

0

50

100

150

200

250

300

Fi
tn

es
s

TPG+SBB Runs

Run 1
Run 2
Run 3
Run 4
Run 5

Fig. 3. TPG+SBB champion scores throughout evolution of 5 different runs.
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Fig. 4. Mean and standard deviation of champion scores throughout evolution,
across 5 GP runs and 5 TPG+SBB runs.
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Fig. 5. Score distributions from champion agents of each run type with
median bars. Each agent ran for 1,000 episodes, 5 agents for GP, 5 agents for
TPG+SBB.

TABLE III
THE MEAN AND STANDARD DEVIATION OF SCORES OVER 1,000

EVALUATION EPISODES FOR THE 5 GP AND TPG+SBB RUNS.

Run Mean SD
GP 1 222.6 85.9
GP 2 142.6 96.7
GP 3 178.4 39.9
GP 4 283.6 59.1
GP 5 169.2 27.9
GP Mean 199.3 61.9
TPG+SBB 1 230.9 100.1
TPG+SBB 2 264.1 110.3
TPG+SBB 3 272.6 50.9
TPG+SBB 4 277.8 55.8
TPG+SBB 5 256.6 48.3
TPG+SBB Mean 260.4 73.08
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Fig. 6. Amount of instruction found per learner/program in for action and
bid programs.

ating a relatively high baseline of diversity, and the multiple
evolutionary restarts.

Figure 7 shows the amount of SBB subpopulation teams
and learners found in the TPG population at each generation.
The amount of teams remains somewhat consistent throughout
evolution. Whenever an SBB team in the TPG population is
mutated that new mutated team is not associated with the SBB
subpopulation (though the original still is). So naturally as
TPG evolves, the SBB teams will be replaced, and get filled
back in consistently, so the level remains mostly neutral.

The amount of SBB learners in the TPG population is on a
constant rise unlike the teams. This suggests that the TPG
population is making good use of the SBB subpopulation
learners, as they tend to contribute to teams that succeed
in selection. Also naturally more learners get referenced per
generation than teams, by the nature of how TPG works.
The number of learners in the population naturally increases
over evolution of TPG anyway, as opposed to the number
of teams which remains mostly static. Of note is that SBB
subpopulation learners make up on average about 62% of the
total learner population by the end of ten thousand generations
of evolution.

In Figure 8 we can see the probability that a given in-
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Fig. 7. Amount of teams and learners originating from SBB subpopulations
used in the TPG population throughout evolution.

struction will use each index from an observation for each
program type (from a single exemplary individual of each run
type). Values from the upper half of the range are deemed
significant here, opposite for values in the lower half of the
range. The GP solution made significant use of the hull related
variables, whereas the TPG+SBB solution hardly made any
use of such variables. The lidar variables hardly saw any
significant use, only lidar6 by TPG+SBB action programs.
The most significant use of any limb related variable was
knee 2 angle by TPG+SBB action programs, which was also
fairly significantly used by TPG+SBB bid programs. Other
limb related variables were mainly only significantly used by
TPG+SBB action programs and the only significantly used
limb variable by GP was hip 2 angle. The added sin and cos
variables saw significant use by each program type, mostly by
TPG+SBB action programs using cos/5, sin/20, and cos/20,
but also by TPG+SBB bid programs using sin/20, and GP
programs using sin/10.

Figure 9 shows which actions are made through an episode.
GP and TPG+SBB solutions both show cyclical properties, as
is likely in locomotion tasks, with GP opting for a higher
frequency of motion. Both solutions show heavy use of one
hip and the opposite knee, hinting at a lunging gait with one
leg kept forward doing the pulling and the hind leg keeping
the walker upright, potentially providing push.

We can see that this lunging gait is what is being used in
Figure 10. As suggested by the evidently quicker frequency
used by GP in moving, Figure 10 (a) shows the GP walker
making more abbreviated steps, not fully extending its leg
out. This is contrasted by TPG+SBB in Figure 10 (b) which
still uses the lunging gait, but makes use of larger steps, even
sometimes getting some air.

VIII. CONCLUSION

A. Summary

TPG has been updated to enable the production of real
valued vector outputs. This allows TPG to participate in

domains which require real valued actions, and potentially
improves upon the previous method of action labels in discrete
action environments.

A new method of evolution called TPG+SBB makes use
of SBB subpopulations, which provide champions to a main
TPG population, which appears to improve average results in
the test case examined (bipedal walker).

Rampancy, a method of increasing the iterations of muta-
tion, seeks to increase the speed of evolution. Results remain
inconclusive in early tests, but it does not seem to harm
performance at-least.

B. Future Work

The ViZDoom and bipedal walker tests still require more
time to be fully complete to provide full results. At the time
of writing, tests for the bipedal walker are still in progress for
the individual SBB and TPG runs. These runs are needed to
properly analyze the influence of TPG+SBB beyond regular
TPG. It is also desired to run similar experiments in the bipedal
walker domain, but in the ”hardcore” version for a greater
challenge and availability of comparisons to other work. Also
further methods of diversity maintenance could be looked at.
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