
Computing Matching Statistics on Repetitive Texts
Younan Gao

Faculty of Computer Science
Dalhousie University

Halifax, Canada
yn803382@dal.ca

Abstract—Computing the matching statistics of a string P [1..m]
with respect to a text T [1..n] is a fundamental problem which
has application to genome sequence comparison. δ, as a relevant
compressibility measure for repetitive texts, was recently intro-
duced by Kociumaka et al. [1]. And they also proved that δ is
an even smaller measure than γ, the smallest string attractor [2].
In this paper1, we study the problem of computing the matching
statistics upon highly repetitive texts. We present that within
O(δ lg n

δ
) words of space, matching statistics can be computed in

O(m2 lgε γ+m lgn) time, where ε is an arbitrarily small positive
constant.

Index Terms—matching statistics, string attractor, repetitive
texts

I. INTRODUCTION

Matching statistics (MS) were introduced by Chang and
Lawler [3] to solve the approximate string matching problem.
The matching statistics MS of a pattern P [1..m] with respect
to a text T [1..n] is an array storing a sequence of m integers
such that MS[i] is the length of the longest prefix of P [i..m]
that occurs in T . For example, given that T =“aaabbbcc”
and P =“ccabb”, the matching statistics MS of P w.r.t. T ,
denoted by MST (P) (or MS(P), when the context is clear),
stores an array of 5 integers, {2, 1, 3, 2, 1}. In addition to
approximate string matching, the matching statistics also plays
an important role in Bioinformatics. The genome sequence
collections in many cases are highly repetitive. However,
the compressed indexes based on statistical entropy might
not capture repetitiveness [4]. In this paper, we focus on
developing a new data structure to compute matching statistics
that works for highly repetitive texts.

A. Related Work

A textbook solution [5] shows that a suffix tree data structure
augmented with suffix links on the tree nodes can support to
compute matching statistics in O(m lg σ) time, where σ rep-
resents the size of the universe that T is draws from. The data
structure uses O(n) words of space. Enno et al. [6] considered
this problem on a fully compressed text indexes built upon
T . Their indexes consist of a wavelet tree data structure that
supports the LF-Mapping and the backward search, a LCP-
array, and a data structure that supports fast-navigating on a
LCP-interval tree. The indexes take n lg σ + 4n + o(n lg σ)
bits of space which allows to computer MST (P) in O(m lg σ)

1This work is part of a course project for CSCI 6905 - Compact Data
Structures in Computational Genomics, instructed by Prof. Travis Gagie.

time. Bannai et al. [7] considered to compute MS for a highly
repetitive text. They augmented a run-length BWT with O(r)
words of space, where r is the number of runs in the BWT for
T , to support computing MS in O(m lg lg n) time, assuming
that each element in T can be accessed in O(lg lg n) time. Let
z denote the number of phrases in the Lempel-Ziv parsing. It
has been proved that r = O(z lg2 n) holds for every text T
[8].

Recently, the new compressibility measures γ, the smallest
string attractor, and δ have been proposed. More details
about γ and δ will be presented in the coming sections. Both
new measures better capture the compressibility of repetitive
strings. It has been proved that δ ≤ γ ≤ z = O(δ lg n

δ) [1],
[2]. We will design the data structure whose space cost is
measured by γ and δ for computing MS. We believe that our
solutions outperform the current state-of-the-art algorithms in
terms of the upper bound of the space cost.

B. Notation

Before introducing matching statistics, we give the precise
definitions of the compressibility measures γ and δ that are
mentioned above.

Definition 1. [2] A string attractor of a string T [1..n] is a set
of γ′ positions Γ′ = {j1, · · · , jγ′} such that every substring
T [i..j] has an occurrence T [i′..j′] = T [i..j] with jk ∈ [i′, j′]
for some jk ∈ Γ′.

Let Γ∗ denote {1,Γ, n}, where Γ denotes the smallest
attractor sorted in an increasing order. For each 2 ≤ i ≤ |Γ∗|,
we call T [Γ∗[i−1],Γ∗[i]] a parsing phrase. We use γ to denote
the size of Γ. Given any substring T [i..j], there must be an
occurrence T [i′..j′] = T [i..j] such that T [i′..j′] crosses the
phrase boundary.

Kociumaka et al. [1] defined a new measure δ, which is even
smaller than γ. Furthermore, δ can be computed in linear time.

Definition 2. [1] Let dk(S) be the number of distinct length-k
substrings in S. Then

δ = max{dk(S)/k : k ∈ [1..n]}.

The precise definition of matching statistics is as shown
below.

Definition 3. The matching statistics MS of a pattern P [1..m]
with respect to a text T [1..n] are an array of integers
MS[1..m] such that P [i..i+MS[i]−1] is the longest substring

of P starting at position i that matches substring somewhere
in T .

Let T1 and T2 be two trees on the same set of leaves.
We say a node from T1 and a node from T2 are induced
together if they have a common leaf descendant. The partner
operation originally from [9] is defined upon the inducing
relationship. In [9], the operation is used to find the longest
common substring. It is also an elementary operation in our
solution. The definition of the partner operation is as shown
below:

Definition 4. [9] Given a pair of trees T1 and T2, the
partner of a node x ∈ T1 w.r.t a node y ∈ T2, denoted by
partner(x/y), is the lowest ancestor y′ of y, such that x and
y′ are induced. Likewise, partner(y/x) is the lowest ancestor
x′ of x, such that x′ and y are induced.

Throughout this paper, we denote ε to be any small positive
constant, and we study all problems in the standard word RAM
model.

II. PRELIMINARIES

In this section, we describe the previous results used in our
solutions.

Lemma 1. [10] Given n points in 2 dimensional rank space,
there is a data structure using f(n) words of space to support
two-dimensional orthogonal range emptiness, reporting, and
predecessor/successor queries in g(n), O((occ + 1) · g(n))
and O(g(n)) time, respectively, so that,
• a) If f(n) = O(n), then g(n) = O(lgε n) query time.
• b) If f(n) = O(n lg lg n), then g(n) = O(lg lg n);

Lemma 2. [1] Given a string S[1..n] with measure δ, there
exists a data structure of size O(δ lg n

δ) that can be built in
O(n lg n) expected time and (1) can retrieve any substring
S[i..i+`] in time O(`+lg n), (2) can compute the Karp–Rabin
fingerprint of any substring of S in time O(lg n), and (3) can
report the occ occurrences of any pattern P [1..m] in S in
time O(m lg n+ occ lgε n).

Lemma 3. [9] (Induced-Check). Given two nodes x, y, where
x ∈ T1 and y ∈ T2, we can check if they are induced or not
in O(lg lgn) time using an O(n lg lg n) space structure, or in
O(lgε n) time using an O(n) space structure.

Lemma 4. [9] (Find Partner). Given two nodes x, y where
x ∈ T1 and y ∈ T2, we can find partner(x/y) as well as
partner(y/x) in O(lg lg n) time using an O(n lg lg n) space
structure, or in O(lgε n) time using an O(n) space structure.

III. COMPUTING MS WITHIN O(δ lg n
δ) WORDS OF SPACE

In this section, we describe the most space-efficient solution
for computing MS.

A. Data Structures

First, we discuss the data structure part. Given a text T [1..n],
we build the following data structures:

• The smallest string attractor of T in O(γ) words and
O(γ) parsing phrases defined upon the positions in the
string attractor;

• The data structure with O(δ lg n
δ) words of space shown

in Lemma 2 for substring queries in T ;
• One Patricia tree T1 for the reversed parsing phrases, and

another T2 for the suffixes starting at phrase boundaries;
Both require O(γ) words of space;

• A linear space data structure for 4-sided emptiness
(as induced-check), and range predecessor/successor (as
partner searching) queries for the grid on which there
is a marker at point (x, y) if the x-th phrase in right-
to-left lexicographic order is followed in the parse by
the lexicographically y-th suffix starting at a phrase
boundary; All uses O(γ) words of space;

Overall, the data structure requires O(δ lg n
δ) words of

space, since γ = O(δ lg n
δ) [1].

B. The Algorithm for Computing MS

With the data structures introduced above, we can compute
MS for a query pattern P [1..m]. As the pattern has m entries,
P can be split into m − 1 different prefix and suffix pairs,
namely P [1..i] and P [i+ 1..m] for each 1 ≤ i ≤ m− 1. Give
a pair of such prefix and suffix, we need to find the loci of
(P [1..i])rev (where the superscript rev indicates that a string is
reversed) in T1 and the loci of P [i+1..m] in T2, respectively,
which can be solved by the following Lemma:

Lemma 5. Given a pattern P [1..m], for all 1 ≤ i ≤ m−1, we
can find the longest common prefix (LCP) of (P [1..i])rev and
the path label of the node where the search in T1 terminates,
and the LCP of P [i + 1..m] and the path label of the node
where the search in T2 terminates in O(m2 +m lg n) time.

Proof. For each 1 ≤ i ≤ m − 1, a query need to access
T to check that the path labels of the nodes where the
searches terminate really are prefixed by some prefixes of
(P [1..i])rev and P [i + 1..m], which can be solved by the
substring queries using Lemma 2. As there are m−1 different
pairs of (P [1..i])rev and P [i+ 1..m] and the total number of
characters that each pair of them contain is m, the searching
time is O(m2 +m lg n).

Next, we give the query algorithm in Theorem 1.

Theorem 1. We can build a data structure for T [0..n − 1]
with O(δ lg n

δ) words of space, such that later, given P [1..m],
we can compute MS for P with respect to T in O(m2 lgε γ+
m lg n) time.

Proof. For 1 ≤ i ≤ m − 1, we search for (P [1..i])rev in
T1 and for P [i + 1..m] in T2; access T to find the longest
common prefix (LCP) of (P [1..i])rev and the path label of
the node where the search in Trev terminates, and the LCP
of P [i+1..m] and the path label of the node where the search
in Tsuf terminates; take loci1 and loci2 to be the loci of those
LCPs.

· · ·

loci1

u

w

root
g
f

e

d
c
o

leaf A leaf B leaf B leaf A

h

i
j

k

l
m
f

loci2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern a b c d e f g h i j k l m n

MS 8 7 6 8 7

u
′T1

T2

Fig. 1. An example of computing MS using Theorem 1. Let P [1..14] = {a, b, c, d, e, f, g, h, i, j, k, l,m, n} denote the query pattern. The loci loci1 and
loci2 of query string P [1..7] and P [8..14] is as shown in T1 and T2, respectively. The query algorithm iterates from loci1 to the root node of T1. Because
loci1 in T1 and u′ in T2 are induced together, we set MS[3] to 8. Next, as u in T1 and u′ in T2 has the same leaf descendant, MS[5] is set to 6. Finally,
the last node we come across with before reaching the root node is w, which is induced with loci2. Therefore, MS[6] is set to 8.

Given a pair of locus loci1 and loci2, we iterate from the
parent node of loci1 to the root of T1. At each node v visited,
we retrieve the node u in T2 such that u = partner(v/loci2).
As defined before, u is the lowest ancestor of loci2 that
is induced together with v. We can see that str(v).str(u)
might be the longest substring of P starting at the position
(i − len(str(v)) + 1) that matches substring somewhere in
T , where str(v) (resp. str(u)) denotes the path labels of
v (resp. u), and thus MS[i − len(str(v)) + 1] could be
len(str(v).str(u)). Note that, specially, if v (resp. u) is the
loci, then str(v) (resp. str(u)) denotes the longest matched
prefix of (P [1..i])rev (resp. P [i + 1..m]). Given a position
k ∈ [1..m − 1], the longest substring of P starting at k can
appear crossing m−k+1 different types of phrase boundaries,
(i.e. the boundaries whose immediately left phrase ends with
P [j] and immediately right phrase starts with P [j+1] for each
k ≤ j ≤ m−1). It follows that MS[i] is always the maximum
length of those different types of longest substrings, because
whenever a longer prefix of P [i..m] that crosses some phrase

boundary and matches somewhere in T [1..n] is found, MS[i]
would be updated. The algorithm is shown in Algorithm 1.
Note that there might be such cases that P contains some
characters that do not appear in the alphabet universe that
T is drawn from. The entries in MS corresponding to those
unseen characters should be set to 0. To avoid missing those
0-entries in MS, initially, we set all entries in MS to 0.

We analyze the query time of the algorithm. As shown in
Lemma 5, all locus of LCPs can be found in O(m2 +m lg n)
time. For each 1 ≤ i ≤ m − 1, the while loop block can
be operated O(i) times. And all O(i) iterations would call
totally O(i) times of partner-finding queries and fill at most
i entries in MS. If only O(γ) words of space is allowed,
each partner-finding query requires O(lgε γ) time as shown
in Lemma 4. Therefore, the overall query time is O(m2 +
m lg n+

∑m−1
i=1 O(i · lgε γ+ i)) = O(m2 lgε γ+m lg n) time.

Algorithm 1 ComputingMS(P [1..m], Tsuff , Tref)
1: MS[1..m] = {0 · · · 0}
2: for i = 1, 2, . . . ,m− 1 do
3: Find loci1 of (P [1..i])Rev in T1
4: Find loci2 of (P [i+ 1..m]) in T2
5: v ← parent(loci1)
6: while v is not the root of T1 do
7: u← partner(v/loci2)
8: vp← parent(v)
9: for j = len(str(v)), j ≥ len(str(vp)), j−− do

10: `← j + len(str(u))
11: if ` > MS[i− j + 1] then
12: MS[i− j + 1]← `

13: v ← vp

14: end

ACKNOWLEDGMENT

The author would like to thank Prof. Travis Gagie for
sharing this interesting research topic in the course CSCI 6905.

REFERENCES

[1] T. Kociumaka, G. Navarro, and N. Prezza, “Towards a definitive mea-
sure of repetitiveness,” in Latin American Symposium on Theoretical
Informatics. Springer, 2021, pp. 207–219.

[2] D. Kempa and N. Prezza, “At the roots of dictionary compression: string
attractors,” in Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, 2018, pp. 827–840.

[3] W. I. Chang and E. L. Lawler, “Sublinear approximate string matching
and biological applications,” Algorithmica, vol. 12, no. 4, pp. 327–344,
1994.

[4] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM
Computing Surveys (CSUR), vol. 39, no. 1, pp. 2–es, 2007.

[5] D. Gusfield, “Algorithms on stings, trees, and sequences: Computer
science and computational biology,” Acm Sigact News, vol. 28, no. 4,
pp. 41–60, 1997.

[6] E. Ohlebusch, S. Gog, and A. Kügel, “Computing matching statistics
and maximal exact matches on compressed full-text indexes,” in Inter-
national Symposium on String Processing and Information Retrieval.
Springer, 2010, pp. 347–358.

[7] H. Bannai, T. Gagie, and I. Tomohiro, “Refining the r-index,” Theoretical
Computer Science, vol. 812, pp. 96–108, 2020.

[8] D. Kempa and T. Kociumaka, “Resolution of the burrows-wheeler trans-
form conjecture,” in 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 2020, pp. 1002–1013.

[9] P. Abedin, S. Hooshmand, A. Ganguly, and S. V. Thankachan, “The
heaviest induced ancestors problem revisited,” in Annual Symposium
on Combinatorial Pattern Matching (CPM 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[10] T. M. Chan, K. G. Larsen, and M. Pătraşcu, “Orthogonal range searching
on the ram, revisited,” in Proceedings of the twenty-seventh annual
symposium on Computational geometry, 2011, pp. 1–10.

[11] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common
ancestors,” siam Journal on Computing, vol. 13, no. 2, pp. 338–355,
1984.

