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Abstract—Benthic habitat mapping is crucial to monitor and
understand ongoing changes to the ocean environment caused
by humanity and preserve fragile ocean ecosystems. Benthic
habitats can be identified precisely from underwater images, but
these images can not be collected at sufficient scale to build a
habitat map on their own. Meanwhile, large-scale surveys can
be conducted with multi-beam echosound that can collect both
bathymetry and backscatter data, however this data is hard
for humans to interpret. Consequently, benthic habitat maps
are currently using simple linear models to classify habitats
using hand-picked features from the echosound data. We aim to
improve benthic habitat mapping by training a model to classify
the habitat from the underlying backscatter and bathymetry
maps. Towards this end, in this paper we show build an
autoencoder model of both bathymetry and backscatter that can
extract high-level features from the echosound data. In the future,
this model will be used for habitat classification.

Index Terms—benthic habitat, backscatter, bathymetry, under-
water imagery, convolutional autoencoder

I. INTRODUCTION

A benthic habitat is an underwater environment on the
seafloor that sustains a particular community of plants and an-
imals. The mapping of benthic habitats is important to discern
changes in the distribution of habitats and understand ongoing
changes to ocean environments, especially those driven by
human activities, and protect fragile ocean ecosystems.

Benthic habitat maps are created using a variety of data
sources. The most precise data is visible-light images of the
seafloor, collected by divers and Autonomous Underwater
Vehicles (AUV) equipped with cameras. Marine scientists can
examine these photographs to identify the habitat type. How-
ever, these dives are highly localized and cannot be applied at
scale. Meanwhile, large-scale surveys can be conducted with
techniques such as multi-beam echosound (MBES), collected
from aboard a ship traversing the ocean surface. MBES can
collect both bathymetry and backscatter data. Bathymetry
is the underwater equivalent of topography and comprises
the depth of the ocean floor, derived from the latency of
the echosound return signal. Backscatter is the intensity of
the echosound return, which provides information about the
hardness of the seafloor and can be used to differentiate
between different types of substrate.

Currently, benthic habitat maps are created by extracting
hand-crafted features from the backscatter such as depth,

slope, aspect, and rugosity, and fitting a simple linear model to
generalize from the classifications at ground-truthing camera
sites to the rest of the survey [4]. Developments in the field
of computer vision have demonstrated that end-to-end differ-
entiable deep learning models, which learn to extract features
from the raw data, greatly exceed the performance of models
utilizing hand-crafted features. We intend to apply modern
computer vision techniques to this problem in order to extract
more data pertinent to benthic habitat classification from the
maps of bathymetry and backscatter. Our aim is to build a
model which can improve the accuracy of benthic habitat
maps, and minimize the need for costly camera deployments
so these maps can be generated at scale.

II. RELATED WORK

Kostylev et al. [1] collected benthic imagery using a drop
camera and inferred habitat types from this imagery were
related to the terrain complexity, depth, water current, and
backscatter to produce a habitat map. This method is limited
by the slow rate of data acquisition and sparsity of collected
sample using a drop camera. Benthic imaging AUVs equipped
with advanced navigation solutions collect georeferenced im-
agery as they run their survey paths, thereby greatly increasing
the samples collected. The abundance of data collected by
AUVs enables the use of data-driven machine learning models.

Marsh and Brown [2] trained an unsupervised bathymetry
and backscatter classifier using self-organizing maps. Al-
though this classifier groups similar bathymetry and backscat-
ter areas, it lacks corresponding habitat classes requiring fur-
ther classification. Ahsan et al. [3] use Gaussian Mixture Mod-
els (GMMs) to predict the habitat class from bathymetry, by
first extracting the morphological features of rugosity, slope,
and aspect. Shields et al. [4] uses a denoising autoencoder for
feature extraction from the bathymetry rather than extracting
morphological features. This allows more information in the
feature space than manually collected.

In this paper, we build on the techniques of Shields et. al.
[4] by incorporating backscatter data alongside bathymetry
data, and extract features from these using an autoencoder.
We anticipate that the learnt representation will be useful for
habitat classification.



Fig. 1. Model architecture.

III. METHODS

Bathymetry and backscatter data are strongly correlated to
habitat class as they carry information about depth, slope,
aspect, and rugosity that are the main factors affecting ben-
thic habitat [4]. In order to extract useful features from
acoustic data, we trained a convolutional autoencoder on
the bathymetry and backscatter data, which were presented
to the network simultaneously as a two-channel image. An
autoencoder has two components: an encoder, which processes
the input and produces a compressed representation of it;
and a decoder that reconstructs the original input from the
compressed representation. The learnt encoding can then be
used for downstream tasks, taking advantage of the features
extracted by the encoder. In our case, this would be a benthic
habitat classifier.

We implemented an autoencoder in Keras, the architecture
for which is illustrated in Fig. 1. Our encoder has two 2D
convolutional layers, with 128 and 64 filters respectively, a
kernel size of 3, and “same” padding. Both convolutional
layers are followed by rectified linear unit (ReLU) activation
and max-pooling with pool size (2,2), stride 2, the output of
which is flattened. Following this, two fully connected linear
layers are used with 64 units each and ReLU activation. There
is one more fully connected linear layer with 32 units to
constitute the latent space. The decoder has a mirrored network
structure, with an additional convolutional layer with 2 filters
to output the reconstructed patch.

For training the autoencoder, we used the southeast Tas-
mania survey that was carried out by Geoscience Australia
in 2008 and 2009 with corresponding bathymetry [5] and
backscatter [6] data. Missing data points within the survey
grid were filled with linear interpolation. These can arise when
neighboring transects of the ship during the survey are too far
apart. Since inputs to our model are square and the shape of
the survey is not rectilinear, we also interpolated data points
outside of the convex hull of the survey using nearest-neighbor

Fig. 2. Bathymetry and backscatter data histograms.

Fig. 3. Average and standard deviation of mean squared error on training and
validation partitions across 10 random initialisations.

interpolation.The bathymetry grid has a resolution of 1.6m,
whereas the backscatter has a resolution of 2.0m. We linearly



Fig. 4. Original and reconstructed bathymetry and backscatter patches for 10 samples from the test partition.

interpolated all 28m×28m sample patches of bathymetry and
backscatter onto a new grid with a resolution of 1.0m. For our
experiments, we extracted 11,010 random patches (10,000 for
training, 1,000 for validation, 10 for test) of bathymetry and
backscatter. The autoencoder was trained for 10 epochs with
a batch size of 32 using the Adam [7] optimizer, learning rate
0.001, weight decay 1e-7. The loss function used was mean
squared error (MSE).

IV. RESULTS

During experiments it took around 500s to fill missing
values inside and outside of the convex hull of the survey for
each of bathymetry and backscatter on a local machine (CPU:
Intel Core i7 7700HQ, RAM: 16GB-DDR4). As we are using
the combination of bathymetry and backscatter data as a model
input, we needed to make sure they both have the similar
scale to guarantee that the autoencoder loss function (MSE) is
affected by both data in the same level. From Fig. 2, it is clear
they have different scales and require normalization. In order
to normalize the input data in patch, we subtracted the mean of
the patch, and divided by the average standard deviation over
patches in the survey. The average standard deviation over
patches was calculated by cutting 28×28 patches from whole
survey data with 50% overlap. We trained the autoencoder 10
times; the average and standard deviation of the MSE loss over
10 epochs are shown in Fig. 3.

Exemplar reconstructed bathymetry and backscatter test
patches are shown alongside the originals in Fig. 4. The re-
construction is accurate, indicating the autoencoder has learnt
an appropriate embedding space.

V. DISCUSSION

In this paper we extracted features from the bathymetry
and backscatter data on a particular survey using a convo-
lutional autoencoder. Our feature extraction appears to be
working well, as reconstructed images are reasonably close

to the originals (Fig. 4). However, our goal for this feature
extraction is to learn an embedding space that is useful for
the downstream habitat classification task. We will be able to
better examine the utility of the features for this task once we
have implemented the classifier component of the model.

Going forward, we are acquiring more bathymetry and
backscatter surveys from around the globe in order to train
a more powerful embedding model which can provide a
suitable representation of the MBES data across a diversity of
benthic habitats. We intend to use these embeddings to train a
classification model which can map from the learned MBES
representations to the habitat class labels.
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