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Abstract—As data sets grow and combine and the capacity to
collect data increases, resource efficient algorithms are becoming
more necessary for handling microbial ecology data. Clustering,
exploring, and visualizing data becomes difficult without the aid
of significant computing resources. In this paper, we present
Ananke 2, an algorithm for dynamically and progressively
clustering large sets of microbial features. Our algorithm uses
bloom filters to store the relationships between microbial features
(taxonomic unit counts, amplicon counts, functional gene counts,
etc.). These succinct, probabilistic data structures allow the
network structure of the microbial features to be stored in a
memory-efficient way, enabling the clustering and exploration
of very large feature sets. Ananke 2 is particularly suited to
clustering time-series data, and supports time-series specific
distance measures such as short time-series distance and dynamic
time warping.

Index Terms—bioinformatics, microbiology, amplicon sequenc-
ing, clustering, bloom filters

I. INTRODUCTION

Researchers in the microbiome fields are capable of collect-
ing quantitative data on biological features, such as taxonomic
units or groups or functional genes, at steadily increasing rates.
As a result of an ”explosion in sequencing data”, there has
been a proliferation of tools to process, analyze, and manage
microbiome data [Narayan et al., 2020]. As time-series data
sets continue to grow, meta-analyses of combined data sets
are created, and overall sequencing capabilities increase, the
need for efficient algorithms and data management strategies
increases.

One common concept in microbiome data science is data
clustering, which can be done to reduce data sets to more com-
putationally manageable sizes or to identify and/or collapse
groups of similar objects. Sequence clustering, such as the
creation of operational taxonomic units (OTUs) or amplicon
sequence variance (ASVs), is done to collapse large sequence
data sets into a set of similar sequences that is manageable
for downstream analysis such as phylogenetic tree building
and ordinations. Taxa, functional genes, or samples can all
be clustered to identify and investigate similar groups of
these objects. Techniques range from hierarchical clustering,
to graph-based, and machine learning methods.

In a previous paper, we presented Ananke [Hall et al., 2017],
a computational tool for clustering amplicon sequences and

taxonomic units that were collected as a part of a time series.
In that analysis, we showed that a time-adjusted distance
measure, the short time-series distance, performed well for
aggregating time series by overall dynamics and producing
meaningful time-series clusters. We also demonstrated that
the temporal dynamics of the sequences that comprised an
OTU were not always consistent, suggesting that sequence
similarity algorithms were grouping different ecotypes into
a single taxonomic unit. This has the impact of potentially
obscuring or altering true temporal dynamics, and has been
noted by others such as Tikhonov et al. [2015].

The presented work builds on the concepts and goals of the
first Ananke project, but aims to be more memory-efficient in
order to support the feature sets of larger projects and meta-
analyses. The second iteration of this algorithm also aims to
be more robust, supporting partial clustering and interrupting
large computations to explore processed data.

Fig. 1. Input data consists of feature counts or abundances across a series
of samples that possibly form a time-series. A distance measure is used to
compute the distances between all pairs of features. This distance matrix can
be used to explore the sequences in a similarity domain, such as by clustering.

When clustering biological features, the general process is to
take the numeric count or abundance matrix (normalized as ap-
propriate) and compute a distance matrix with a given distance
function (Figure 1). If the number of features is low (in the low



thousands), then modern hardware can compute and store the
entire m features by m features distance matrix. The O(m2

storage complexity of the feature distance matrix means that
each additional feature adds an exponentially-growing amount
of memory required. Unlike the count/abundance matrix which
is often highly sparse, a distance matrix tends to be very dense,
meaning a more succinct representation will require more
creativity to generate. We harness bloom filters, a succinct
probabilistic data structure, in order to generate a useful
representation of the feature distance matrix in a smaller, fixed-
memory space. Alongside the DBSCAN clustering algorithm
Ester et al. [1996] used in the original Ananke algorithm, the
improved efficiencies allow more expensive distance measures,
such as dynamic time warping (DTW) Berndt and Clifford
[1994] to be used to generate time-series clusters, while
integration with the scipy software package provides access
to numerous ecologically-relevant distance measures for time-
agnostic applications.

II. METHODS

Ananke 2 is open-source software available online at
GitHub (https://github.com/mwhall/q2 ananke).

As mentioned previously, the distance matrix computed
between microbial features can quickly become too large for
memory, especially as the number of features is generally
much larger than the number of samples. Our algorithm
employs succinct, probabilistic data structures to capture and
query the neighbour relationships of the features in a small
memory footprint. The probabilistic data structure used by
Ananke 2, the bloom filter, are objects that store the mem-
bership of items in a set.

The Ananke 2 algorithm involves computing the distances
between microbial features and storing pairs of feature iden-
tifiers in bloom filters when they are neighbours at a given
threshold. This captures the network structures of the features
in a succinct bit-string, which can be easily and efficiently
loaded from disk to memory. It is a light-weight, practical
representation of the relationships between microbial features,
and enables useful data exploration and clustering strategies
for very large feature sets.

The algorithm initializes with a m features × n sample
count or abundance table (Figure 1). Features are considered
neighbours if the computed distance between them is below a
specified threshold.

Features are added progressively to the data structure,
allowing it to expand its scope as time and computational
resources allow. Ananke 2 is designed to be interrupted to
allow immediate exploration of a partially-computed set of
features. Features can be added to the computation queue by
several criteria: A) Abundance, B) Taxonomy, C) Search, and
D) Cluster expansion (Figure 2). In many situations, the most
abundant features are the most likely to be of importance, so
a good strategy is to begin by computing the relationships
between the top N abundant features or by using some other
abundance cut-off. This captures the neighbourhoods of abun-
dant features and can be used to explore the partially-computed

Fig. 2. Circles represent features arranged in a similarity domain. Filled
circles are features that have had their distances computed, while dotted circles
represent features that are in the full data set, but are not yet computed and
will not be part of any clusters until they are. A larger diameter implies a
larger abundance. A) The most abundant features (green) are computed, and
low abundance features remain uncomputed. B) If the features are sequences
that can be taxonomically classified, all features of a given taxonomic group
(e.g., blue) can be computed. C) Features can be queried by name and, if
not already computed, are computed at query time and do not have to be
recomputed subsequently. D) The features belonging to a specified DBSCAN
cluster can be computed against all outstanding, uncomputed features to
identify undetected neighbours in the full data set and compute all distances.
Blue and pink represent DBSCAN clusters of features, and pink has been
expanded and three low abundance features were detected as neighbours and
added to the cluster.

similarity space that includes those features. If the features
are amplicon sequences, taxonomic metadata can be provided
to ensure all features of a given taxonomy are computed. If
a feature is queried by name, then it will be added to the
computation queue if not already added. Finally, a cluster of
pre-computed features can be specified and used to search
the uncomputed set of features for any similarly distributed
sequences, and expanded by their inclusion.

Once distances are computed, the data can be clustered to
identify similar groups of features. The DBSCAN algorithm
can be computed quickly when the neighbours(fi,fj,ε)
operation can be returned in constant time. The bloom filter
structures store the neighbour pairs, and set membership from
a bloom filter is returned in constant O(1) time. The Ananke
2 algorithm requires a discrete range of distance cut-offs, the
DBSCAN ε parameter, and uses bloom filters to store the pairs
of features that are neighbours at each ε value in that range
(Figure 3). Bloom filters have a capacity after which too many
items have been added such that the false positive rate is higher
than a specified tolerance due to the presence of too many
flipped one bits in the bit string. When a bloom filter hits this
capacity for a given ε, it is removed and deleted. Often the
bloom filters fill because the specified ε is large and produces
nearly fully-connected graphs of features, but the user can
increase a memory multiplier parameter to recompute with
more capacity.

https://github.com/mwhall/q2_ananke


Fig. 3. Features are added to the data structure in a user-specified priority.
Features that have been computed are added to a smaller bloom filter, and the
pair fi, fj are added to all ε value bloom filters when the distance between
the features is less than or equal to that filter’s threshold. When a bloom filter
is full (red), its false positive rate will be too high and it will be removed.

III. RESULTS

The clusters can be explored by plotting as time-series. If
a feature name is provided, Ananke 2 will return the clusters
over a range of ε distance values. As that ε becomes larger,
the clusters that are being returned are larger. Eventually, as
ε is increased the clusters will merge and become harder to
interpret. But for smaller ε values, the clusters can show clear
dynamics. Figure 4 shows an example time-series cluster from
the Bedford Basin consisting of 10 distinct variants.

IV. CONCLUSIONS

We present the second version of Ananke, an algorithm
for clustering microbiome data. This version uses probabilistic
data structures to map large interaction networks onto small in-
memory objects. These data structures can be queried for fast
clustering of very large similarity spaces. Ananke 2 is useful
for clustering time-series data, or any features by more general
distance measures. The progressive clustering strategy allows
very large data sets to be worked with as they are computed,
revealing areas of a similarity domain as they become relevant

Fig. 4. Example of a time-series cluster from a Bedford Basin data set.
Similarity was measured by the cosine distance.

to the user, and making it faster and easier to begin working
with larger data sets.
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