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Abstract—Supervised learning models often make systematic
errors on relatively rare subsets of the data. However, such perfor-
mance problems can be difficult to identify: model performance
can be broken down across sensitive groups, but only when these
groups are known and explicitly labelled. This paper introduces
a method for discovering systematic errors, which we call the
spotlight. The key idea is that similar inputs tend to have similar
representations in the final hidden layer of a neural network.
We leverage this structure by “shining a spotlight” on this
representation space to find contiguous regions where the model
performs poorly. We show that the spotlight surfaces semantically
meaningful areas of weakness in a surprisingly wide variety of
model architectures, including image classifiers, language models,
and recommender systems.

I. INTRODUCTION

Despite their superhuman performance on an ever-growing
variety of problems, deep learning models that perform well
on average often make systematic errors, performing poorly on
semantically coherent subsets of the data. A landmark example
is the Gender Shades study [2], which showed that vision mod-
els for gender recognition tend to exhibit far higher error rates
when presented with images of black women. AI systems have
also been shown to perform poorly for marginalized groups
in object recognition [7], speech recognition [15], mortality
prediction [4], and recruiting tools [4]. Other systematic errors
can be harder for practitioners to anticipate in advance. Medical
imaging classifiers can be sensitive to changes in the imaging
hardware [6]; essay scoring software can give high scores to
long, poorly-written essays [18]; and visual question-answering
systems can fail when questions are rephrased [21].

Recognizing and mitigating such systematic errors is critical
to avoid designing systems that will exhibit discriminatory or
unreliable behaviour. In response to these issues, the community
has begun to advocate for a deeper understanding of where deep
learning models perform poorly. Pretrained models are often
released with model cards [16], which include descriptions
of the model’s performance across relevant sensitive groups,
and interactive tools have been developed to explore areas
where models tend to make errors [3, 1, 24]. Further, new
optimization methods intend to produce models with more

balanced performance across predefined groups (see, e.g., [5]
for a review).

All such methods require practitioners to recognize and
label well-defined groups in their dataset ahead of time,
necessarily overlooking semantically related sets of inputs that
the practitioner failed to identify in advance. While practitioner
should certainly continue to assess model performance on
sensitive subpopulations such as marginalized groups, such
approaches do not constitute a fully satisfying solution because
it is extremely difficult to anticipate all of the sorts of inputs
upon which models might systematically fail: e.g., vision
models could perform poorly on a particular age group, pose,
background, lighting condition, etc.

In this work, we introduce the spotlight, a method for
finding systematic errors in deep learning models even when
the semantic link between these errors was not anticipated
by the practitioner. The key idea is that similar inputs tend
to have similar representations in the final hidden layer of
a neural network. We leverage this similarity by “shining a
spotlight” on this representation space, searching for contiguous
regions in which the model performs poorly. We show that the
spotlight surfaces semantically meaningful areas of weakness
in a surprisingly wide variety of otherwise dissimilar models
and datasets, including image classifiers, language models, and
recommender systems.

Our approach is closely related to a recent literature on
distributionally robust optimization (DRO) that aims to train
models to perform well across a range of test distributions.
These methods define an adversary that has the ability to
reweight the dataset, aiming to select a reweighting where the
model performs poorly. The earliest work in this literature
defined adversaries with the power to reweight each example
in the dataset separately [10], or to select a new distribution
over group labels [17]. Most relatedly, Sohoni et al. presented
GEORGE [22], a method for applying DRO without group
labels, which takes an approach similar to our own. GEORGE
infers “subclasses” within the dataset by clustering points
within a trained neural network’s representation space, then
allows an adversary to modify the distribution over subclasses.
While Sohoni et al. focused on training robust models, they do



observe that these clusters tend to correspond to semantically
meaningful subsets of the data (for instance, images of birds on
land vs. on water). They also observe that their reliance upon
a superlinear-time clustering method limits its applicability
to large datasets. The spotlight exploits the same underlying
insight about inputs that embed together sharing semantic
structure but focuses on auditing models rather than robust
training; dramatically lowers computational cost to linear time;
relies upon model loss rather than an unsupervised clustering
algorithm to identify such inputs; and avoids partitioning the
entire embedding space, searching only for contiguous, high-
loss regions.

Rather than replacing existing methods for measuring biases
in trained models, we believe the spotlight is a tool that
practitioners will want to add to their model-building pipelines.
Integrating the spotlight into a model development process can
help developers recognize when their model has failure modes
that need to be addressed by augmenting the dataset, adjusting
the model architecture, or using more robust optimization
methods. We hope that informing these feedback loops can
help the community build models with fewer systematic errors,
making for more equitable and reliable machine learning
systems in the real world.

II. THE SPOTLIGHT: FINDING SYSTEMATIC BIASES IN
TRAINED MODELS

Our method aims to explore potential distribution shifts by
reweighting examples in the dataset. In particular, we examine
reweightings induced by a Gaussian-like parameterized kernel
function that emphasizes examples centred around a given
point in the model’s final layer representation space. We refer
to the reweighting associated with a particular choice of the
kernel function as a spotlight.

We wish to avoid spotlights that are highly focused on only
a few points, so we restrict the kernel functions of interest
by imposing a minimum constraint on the total weight. The
methodology of describing distribution shifts according to a
kernel function both enforces reweightings that are continuous
over the representation space, and allows us to easily optimize
for the kernel’s parameters for desirable spotlights.

In order to capture contiguous regions of high loss in the
representation space of a model’s final layer, we optimize the
parameters of the kernel function to find a configuration that
maximizes the expected weighted loss over the dataset. For-
mally, if we suppose the data points have representation vectors
x1, . . . , xN in Rd, we compute the weights ki = k(xi, µ, τ)
by

k(xi, µ, τ) = exp

(
−1

2
(xi − µ)>τ(xi − µ)

)
where µ ∈ Rd is the center of the spotlight and and τ ∈ Rd×d
is a positive semidefinite precision matrix. Note that the range
of ki is (0, 1], and 1 is achieved if and only if xi = µ. If the

Fig. 1: An example of a spotlight in a model’s representation
space.

respective losses the model achieves on the data points are
l1, . . . , lN , then we define our objective as:

max
µ,τ

∑
i

(
ki∑
i ki

)
li

s.t.
∑
i

ki ≥ S,

for some choice of the hyperparameter S. We interpret S as
the “spotlight size”, as this setting ensures a lower bound on
the total weight that the spotlight assigns across the dataset.
Since the sum of the weights, ki, has an upper bound of N , a
typical setting of S is some fixed fraction of the number of data
points. In development, we considered S ∈ [0.001N, 0.1N ].

To search for an optimum, we apply the Adam optimizer
with an adaptive learning rate, halving the learning rate each
time the objective reaches a plateau. Since the feasible region is
non-convex and the optima tend to lie close to the constraint, we
struggled to find good optima in preliminary experiments. We
therefore employ a barrier method, which adds a penalty term
that increases as we move closer to the constraint. Over time,
we apply this penalty in smaller regions around the constraint,
so that the optimization path is primarily through the interior of
the feasible region rather than along the constraint. We found
that this significantly improved optimization of the spotlights.

To get the most out of the spotlights, we developed a method
of finding multiple distinct spotlights on the same dataset
without changing any hyperparameters. This method iteratively
subtracts spotlight weight from its internal accounting of each
example’s loss and then finds another spotlight. More formally,
using the weights provided by spotlight, ki, we update the
losses as

l′i :=

(
1− ki

maxi ki

)
li;

we then perform the same optimization as above and repeat as
many times as desired. In all of our experiments, we present
multiple spotlights obtained in this way.

We considered two approaches for parameterizing the
precision matrix. In the first, we allow the spotlight to use any
positive semidefinite precision matrix τ � 0, allowing it to



form “elliptical” spotlights with a different length scale along
each axis. We found that these flexible spotlights sometimes
failed to find semantically meaningful groups, particularly in
very high-dimensional embedding spaces. In our experiments,
we instead focus on “spherical” spotlights, requiring that
τ = cI for some precision parameter c > 0. We found
that these spherical spotlights were generally sufficient to find
semantically meaningful problem areas, and were much faster
to optimize with far fewer precision parameters.

In preliminary tests we tried spotlight sizes ranging from
0.1% to 10%, optimized to maximize cross entropy. Overall,
spotlights on the smaller end of this spectrum were too selective
to observe any cohesion, whereas the largest spotlights were
too inclusive. For vision models, we could simply scan the
images in the spotlight for cohesion, while for the other models
we found it necessary to describe the spotlights using summary
statistics. Taking this into account, we settled on a spotlight
size of 2% for vision models and a spotlight size of 5% for
non-vision models, to allow a larger sample for higher-level
summary statistics.

III. EXPERIMENTS

The spotlight is relatively model-agnostic: it only requires
knowledge of the final layer representations and the losses
for each input. We demonstrate this flexibility by using the
spotlight to evaluate a broad range of pretrained models from
the literature, spanning image classification (faces; objects;
x-rays), NLP (sentiment analysis; question answering), and
recommender systems (movies). In each case, we show that the
spotlight recovers systematic issues that would have otherwise
required group labels to uncover. We note that report full
results for every dataset we tested (most in Appendix ??),
showing the method’s surprising reliability. We present the first
5 and 3 iterative spotlights for vision and non-vision models
respectively. We ran our experiments on a compute cluster
having NVIDIA Tesla V100 GPUs. Using this hardware, each
spotlight presented in this section took under 1 minute to
optimize, emphasizing the computational tractability of our
approach even on very large datasets.

A. FairFace

We first study FairFace [13], a collection of 100,000 face
images annotated with crowdsourced labels about the perceived
age, race, and gender of each image. FairFace is notable for
being approximately balanced across 7 races and 2 genders. In
particular, we trained a model to predict the perceived gender
label as a proxy for the gender prediction systems studied in
prior work [2]. Our model was a ResNet-18, trained using
Adam with cross-entropy loss and a learning rate of 3e-4;
we stopped training after 2 epochs when we found that the
validation loss began increasing. We ran the spotlight on the
validation set, using the final 512-dimensional hidden layer for
the representation space.

Our results are shown in Figures 2 and A2. We found that
each of the spotlights discovered a strikingly different set
of faces, each representing a problem area for the model.

The first shows a set of profile (i.e., side) views, where it is
difficult to see many of the facial features; the second shows
several gray or discolored images; the third consists mostly of
young children whose genders are relatively harder to discern.
The fourth and fifth spotlights consist of black faces in poor
lighting and Asian faces, respectively. Overall, our spotlights
identified both age and racial groups that the model performs
poorly on—without access to these demographic labels—and
semantically meaningful groups for which labels did not exist.
In comparison, the high-loss images are an unstructured set
of examples that include occluded faces, poor lighting, blurry
shots, and out-of-frame faces.

B. ImageNet

For a second vision dataset, we study the pretrained ResNet-
18 model from the PyTorch model zoo [19], running the
spotlight on the 50,000 image validation set. As in FairFace,
we used the final 512-dimensional hidden layer of the model
as the representation space.

Our results are shown in Figures 3 and A3. Each spotlight
found a set of images that have a clear “super-class”, but are
difficult to classify beyond this super-class. The first spotlight
contains a variety of images of people working, where it is
difficult to tell whether the label should be about the person in
the image, the task they’re performing, or another object. The
second and fourth spotlights consist of cluttered countertops,
where it is tough to decide which object in the image should
be labelled. The remaining spotlights show a variety of animals
in natural settings, where recognizing a high-level class such
as “dog” might be simple, but predicting the correct breed of
dog is not. In contrast, the high-loss images appear to have
little structure, with many of them having unexpected labels,
such as “pizza” for an image of a squirrel in a tree holding a
piece of pizza.

C. Sentiment analysis: Amazon reviews

Next, we turn to the Amazon polarity dataset [25], a
collection of 4 million plain-text Amazon reviews labelled
as “positive” (4-5 stars) or “negative” (1-2 stars). We used a
popular pretrained checkpoint of a DistilBERT model from
Huggingface [12], which was fine-tuned on SST-2, a set of
English sentences labelled with binary sentiment labels. We
ran the spotlight on a sample of 20,000 reviews from the
validation set, using the final 768-dimensional hidden layer as
the representation space.

We found it more difficult to spot patterns in the spotlights on
this dataset by simply reading the highest-weight reviews, so we
instead summarized each spotlight by identifying the tokens that
appeared most frequently in the spotlight distributions, relative
to their frequencies in the validation set. These results are shown
in Figure 4. Remarkably, the first spotlight surfaced reviews that
were written in Spanish, which the model consistently classifies
as negative: it was only trained on English sentences, and its
tokenizer appears to work poorly on Spanish sentences. The
second spotlight highlighted long-winded reviews of novels,
which the model has difficulty parsing. The third found reviews



Random sample:

Highest losses: a diffuse set

Spotlight 1: side profile views/poor framing

Spotlight 2: greyscale/discolored images

Spotlight 3: young children

Fig. 2: Spotlights on FairFace validation set. Image captions list true label.



Random sample:

Highest losses: a diffuse set

Spotlight 1: people working

Spotlight 2: cluttered tabletops; food

Spotlight 3: animals in foliage

Fig. 3: Spotlights on ImageNet validation set. Image captions list true label.



that mention aspects of customer service, such as product
returns, which the model classifies as extremely negative,
incurring very high losses when these reviews are positive.

The highest-loss reviews in the dataset are quite different,
consisting almost entirely of mislabeled reviews. For example,
one review reads “The background music is not clear and the
CD was a waste of money. One star is too high.”, but has a
4-5 star rating; dozens of high-loss outliers follow this pattern,
where the rating clearly contradicts the review text. We note
that this type of label noise would pose a problem for many
distributionally robust optimization methods, which could insist
that the model learn to memorize these outliers rather than
focusing on other important portions of the dataset.

D. SQuAD

To further explore language models, we analyzed spotlights
using a pretrained DistilBERT model [11] fine-tuned on the
Standford question answering dataset (SQuAD) [20]. The
100,000+ examples in the dataset were constructed from 536
Wikipedia articles. The dataset also includes article titles, which
we use for our analysis, but were not visible to the model. For
all experiments, we used the test set, excluding long examples
where the sum of the context and answer sequence lengths
was greater than 384, leaving 10,386 question-answer pairs.

Unlike all other classification models in our experiments,
this question-answering model did not have a single, clear
representation space. Instead, it produces a pair of output
probabilities for every token in the input sequence, with
each token using its own 768-dimensional representation
space. To create a single representation for each question, we
concatenated all of these hidden vectors together, producing
one representation space with 300,000 dimensions; then, we
applied a random projection onto 1,000 dimensions to make
it feasible to optimize the spotlight directly on the flattened
representation.

Summaries of the spotlights are shown in Figure 5. We
applied the same token analysis as in our sentiment analysis
experiments, but additionally show the most common article
titles, relative to their frequency across the entire dataset. The
first spotlight highlighted words related to internet packets, as
well as selecting many questions from the “packet switching”
category; breaking down the model’s losses across these
categories reveals that “packet switching” is indeed the category
where the model gets the highest losses. We generally found a
high level of similarity between spotlight iterations, which could
be a side effect of the random projection. In comparison, high
loss examples correlated with the “super bowl 50” category,
which has a moderately high average loss.

E. MovieLens 100k

We investigated a third domain, recommender systems.
Specifically, we considered the MovieLens 100k dataset [8],
a collection of 100,000 movie reviews of 1,000 movies from
1,700 different users. Besides the rating matrix, it also includes
basic information about each movie (titles, release dates, genres)
and user (age, gender, occupation), which we use during the

analysis, but did not make available to the model. For our
model, we used the deep factorized autoencoder from Graham,
Hartford et al. [9], using the final 600-dimensional hidden layer
for our representation space.

The highest-weight movies in each spotlight are shown in
Figures A5-A7. The first spotlight mostly identifies a mixture of
action and comedy films where the model is overly confident
that users will give 3-4 star ratings, and is surprised when
they even give 2- or 5-star ratings. The second finds that the
model often does poorly at predicting ratings for Pulp Fiction,
reminiscent of the “Napoleon Dynamite” problem in the Netflix
challenge [23]. The third shows that the model is very uncertain
about unpopular, poorly-rated comedy and drama movies,
getting high losses even when it predicts the correct rating.
In comparison, the highest-loss predictions consist mostly of
1-star ratings on movies with high average scores.

F. Chest X-rays

Finally, we ran the spotlight on a sixth dataset, consisting of
6,000 chest x-rays labelled as “pneumonia” or “healthy” [14].
Our results here were more ambiguous, but we describe these
experiments regardless to emphasize the spotlight’s generality
and to reassure the reader that we have presented all of our
findings rather than cherry-picking favorable results. Full details
appear in the appendix. To summarize, the spotlight identified at
least two semantically meaningful failure modes in this domain:
images with the text labels L and R on their sides; images with
very high contrast. However, such images were also relatively
easy to identify in the set of high-loss inputs, so we were
unconvinced that the spotlight offered a decisive benefit in
this case. Examining other spotlighted sets of images made it
quickly apparent to us that we have no expert knowledge in
radiology; it is quite possible that other spotlighted clusters
were semantically related in more fundamental ways. It is also
possible that the small training set size led to a less meaningful
embedding space; indeed, this was one of only two datasets
for which we were unable to leverage an existing, pretrained
model.

IV. FUTURE DIRECTIONS

Our methods give rise to various promising directions for
future work, many of which we have begun to investigate. This
section describes some of these ideas along with our initial
findings.

a) Using the spotlight for adversarial training.: While
this paper advocates for the spotlight as a method for auditing
deep learning models, it also gives rise to a natural, adversarial
objective that could be optimized during training in the style of
the DRO methods surveyed earlier. That is, model training could
iterate between identifying a spotlight distribution, reweighting
the input data accordingly, and minimizing loss on this
reweighted input. A model that performed well on this objective
would have very balanced performance, distributing inputs
with poor performance diffusely across the embedding space.
Unfortunately, our preliminary tests suggest that optimizing
for this objective is not simple. With large spotlights (10% of



Subset Frequent words

High loss length, outdated, potter, bubble, contact, cinematogra-
phy, adjusting, functions, stock, versus

Spotlight 1: Spanish que, est, las, como, y, tod, si, la, dry, por

Spotlight 2: novels bigger, super, hang, prefer, killing, job, discover, slip,
easy, wearing

Spotlight 3: customer service problem, returning, hoping, returned, unfortunately,
okay, box, unless, sadly, ok

Fig. 4: Spotlight on Amazon reviews.

Subset Frequent words Frequent topics

High loss sacks, tackles, confused, yards, behav-
ior, touchdowns, defendants, protesters,
cornerback, interceptions

civil disobedience, 1973 oil crisis,
complexity theory, super bowl 50,
imperialism

Spotlight 1 packet, networking, pad, packets, switch-
ing, communication, messages, ignition,
circuit, bandwidth

packet switching, complexity theory,
teacher, civil disobedience, climate
change

Spotlight 2 why, know, arrest, collective, packet,
membrane, wage, happens, might,
protesters

civil disobedience, packet switching,
chloroplast, french and indian war,
prime number

Spotlight 3 packet, why, packets, punishment, know,
arrest, messages, switching, circuit, col-
lective, wages

packet switching, civil disobedience,
pharmacy, chloroplast, complexity
theory

Fig. 5: Spotlights on SQuAD.

dataset), we found that this method made little difference, with
the model improving more slowly than in regular training; with
smaller spotlights (1%), the model struggled to learn anything,
fluctuating wildly in performance between epochs. We intend
to continue investigating approaches for training against this
flexible adversary.

b) Structure in representations.: An important assumption
that the spotlight makes is that nearby points in the represen-
tation space will tend to correspond to semantically similar
inputs. While this assumption is empirically supported both by
our results and by prior work [22], it is an emergent property of
deep learning models, and we do not currently understand this
property’s sensitivity to details of the architecture and training
method. For instance, does the choice of optimizer (SGD/Adam,
weight decay, learning rate, . . . ) affect the representation space
in a way that interacts with the spotlight? Could we instead
leverage representations learned by alternative models, such as
autoencoders? Understanding the conditions where the spotlight
works well is an important practical problem to investigate.

c) More flexible spotlights.: The structure of the repre-
sentation space relates to our previous discussion of spherical
vs elliptical spotlights. In our evaluation, we restricted our
attention to the former, requiring that the adversary choose
the same variance in each dimension, because we observed

that this was sufficient for discovering semantically meaningful
problem areas in a variety of different domains. However, we
do not claim that this finding will hold across new settings, nor
that an expert could not have made further discoveries about a
model’s failure modes using an elliptical spotlight.

d) Shallow models.: During development, we conducted
some preliminary experiments using the spotlight on shallow
neural nets trained on the Adult and Wine Quality datasets from
the UCI machine learning repository. These datasets differed
from the others we considered because their inputs consist of
a small number of semantically meaningful features. On both,
we found that the spotlight was unable to pick out any specific
problem areas: even when we allowed the spotlight to select a
small fraction of the dataset, it still put an appreciable amount
of weight on more than 20% of the inputs. One explanation is
that the shallow models tended to make quite diffuse errors,
so that each high-loss point was surrounded by blanket of low-
loss examples, making it difficult to pick out a problem area
without also finding many correct examples. These findings
explain this paper’s focus on deep learning models; however,
we remain interested in examining whether the spotlight can
aid in group discovery in “shallow learning” domains where
semantically meaningful features are provided as part of the
input.



V. CONCLUSIONS

The spotlight is an automatic and computationally efficient
method for surfacing semantically related inputs upon which
a deep learning model performs poorly. In experiments, we
repeatedly observed that the spotlight was able to discover
meaningful groups of problematic inputs across a wide variety
of models and datasets, including poorly modelled age groups
and races, ImageNet classes that were difficult to distinguish,
reviews written in Spanish, difficult question categories, and
specific movies with unpredictable reviews. The spotlight found
all of these sets without access to side information such as
demographics, topics, or genres.

The spotlight is not a direct solution to the problem of
systematic errors in deep learning models, instead fitting into a
broader feedback loop of developing, auditing, and mitigating
models. The spotlight is useful in the auditing stage of this
loop, helping practitioners to discover semantically meaningful
areas of weakness that they can then test in more depth and
address through changes to their pipeline. Such a human-in-the-
loop discovery process is critical to identify systematic failure
modes in deep learning systems and mitigate them before they
are able to cause harmful consequences in deployed systems.

a) Potential Social Impacts.: It is conceivable that the
spotlight could be used for debugging harmful AI systems, such
as surveillance technology, to identify regimes under which
these technologies fail and to further improve their efficacy.
This is unavoidable: the spotlight is general enough to work
on a wide range of model architectures, including those that
might cause negative social impacts. Overall, the spotlight’s
main likely effect would be helping practitioners to increase
the fairness and robustness of deployed deep learning systems
and to gain confidence that their models to not systematically
discriminate against coherent subpopulations of users.
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APPENDIX

In Figure A1, we summarize licensing and content consider-
ations for each of the datasets used in this work.

We also include additional outputs from the spotlights on
the image and MovieLens datasets that were described in the
text. In particular, we include spotlights for:
• FairFace: fourth and fifth spotlights in Figure A2
• ImageNet: fourth and fifth spotlights in Figure A3
• MovieLens: high loss ratings in Figure A4; spotlight

examples in Figures A5-A7
• Chest x-rays: random sample, high loss examples, and

first three spotlights in Figure A8; final two spotlights in
Figure A9

https://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html
https://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html


Dataset License PII Offensive content

FairFace CC BY 4.0 none none
ImageNet custom non-commercial none none
Amazon reviews Apache 2.0 none Offensive words in reviews are censored
SQuAD CC BY 4.0 none none
MovieLens 100K custom non-commercial none none
Chest x-rays CC BY 4.0 none none
Adult MIT none none
Wine quality MIT none none

Fig. A1: :)

Spotlight 4: dark skin tones; poor lighting

Spotlight 5: Asian faces

Fig. A2: Additional spotlights on FairFace.

Spotlight 4: cooking tools; food

Spotlight 5: outdoor dogs

Fig. A3: Additional spotlights on ImageNet.



Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

4 1 11.2 Pulp Fiction Crime 4.2 (82) 97
4 5 11.0 Princess Bride, The Action 4.1 (58) 3
5 1 10.9 Face/Off Action 3.9 (42) 73
4 1 10.5 Usual Suspects, The Crime 4.3 (56) 202
4 1 8.8 Fargo Crime 4.3 (113) 75
3 5 8.7 Wizard of Oz, The Adventure 4.2 (46) 8
5 1 8.1 Alien Action 4.2 (68) 96
3 1 8.0 Mother Comedy 3.2 (34) 25
4 1 7.9 Boot, Das Action 4.0 (35) 104
5 1 7.9 English Patient, The Drama 3.7 (93) 73
5 1 7.8 Shallow Grave Thriller 3.7 (14) 73
5 1 7.8 Face/Off Action 3.9 (42) 131
4 1 7.7 Devil’s Advocate, The Crime 3.7 (31) 44
3 5 7.6 Addams Family Values Comedy 3.1 (18) 74
5 1 7.5 Raiders of the Lost Ark Action 4.3 (76) 156

Fig. A4: Rating predictions with highest losses from MovieLens 100k.

Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

3 2 1.8 Crow, The Action 3.4 (30) 66
3 3 1.2 Crow, The Action 3.4 (30) 100
4 4 1.1 True Lies Action 3.2 (40) 78
4 5 1.5 Jurassic Park Action 3.6 (53) 39
4 2 1.7 Romeo and Juliet Drama 3.4 (27) 263
4 5 1.3 Jurassic Park Action 3.6 (53) 78
1 3 1.6 Crow, The Action 3.4 (30) 39
4 3 1.6 Romeo and Juliet Drama 3.4 (27) 73
4 5 1.4 Scream Horror 3.4 (87) 78
4 2 1.7 Pretty Woman Comedy 3.5 (32) 131
4 3 1.4 True Lies Action 3.2 (40) 263
4 2 1.8 True Lies Action 3.2 (40) 66
3 3 1.1 Scream Horror 3.4 (87) 66
4 4 1.2 MST3K Comedy 3.3 (30) 263
4 2 2.1 MST3K Comedy 3.3 (30) 20

Fig. A5: Spotlight 1 from MovieLens 100k.



Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

2 5 1.3 Pulp Fiction Crime 4.2 (82) 79
5 2 1.5 Pulp Fiction Crime 4.2 (82) 15
5 5 0.8 Pulp Fiction Crime 4.2 (82) 26
4 5 1.4 Pulp Fiction Crime 4.2 (82) 171
5 5 0.9 Pulp Fiction Crime 4.2 (82) 94
4 4 0.9 Pulp Fiction Crime 4.2 (82) 124
5 4 1.2 Pulp Fiction Crime 4.2 (82) 54
5 5 0.6 Pulp Fiction Crime 4.2 (82) 108
5 3 1.6 Citizen Kane Drama 4.3 (40) 74
5 5 0.7 Pulp Fiction Crime 4.2 (82) 46
4 5 1.2 Pulp Fiction Crime 4.2 (82) 143
4 1 11.2 Pulp Fiction Crime 4.2 (82) 97
5 5 0.6 Pulp Fiction Crime 4.2 (82) 99
5 4 0.9 Pulp Fiction Crime 4.2 (82) 173
4 2 2.4 Shine Drama 4.0 (23) 55

Fig. A6: Spotlight 2 from MovieLens 100k.

Prediction Rating Loss Movie Genre Avg (# Reviews) User reviews

4 4 1.0 Great White Hype, The Comedy 2.8 (12) 80
1 1 0.7 Black Sheep Comedy 2.2 (12) 53
4 4 0.8 Great White Hype, The Comedy 2.8 (12) 179
1 1 1.0 Speed 2: Cruise Control Action 2.0 (8) 174
4 1 1.6 Georgia Drama 2.4 (10) 74
4 3 1.2 Georgia Drama 2.4 (10) 109
3 2 1.6 Casper Adventure 2.6 (12) 174
4 4 0.8 Transformers: The Movie Action 2.2 (8) 95
4 4 1.1 Beyond Rangoon Drama 2.6 (5) 167
1 1 0.8 Black Sheep Comedy 2.2 (12) 84
3 2 1.4 Georgia Drama 2.4 (10) 126
4 2 1.8 Beyond Rangoon Drama 2.6 (5) 121
4 3 1.0 Great White Hype, The Comedy 2.8 (12) 63
2 3 1.3 Great White Hype, The Comedy 2.8 (12) 28
3 3 0.9 Transformers: The Movie Action 2.2 (8) 208

Fig. A7: Spotlight 3 from MovieLens 100k.



Random sample:

Highest losses:

Spotlight 1:

Spotlight 2:

Spotlight 3:

Fig. A8: Chest xray sample images, high loss images, and spotlights.



Spotlight 4:

Spotlight 5:

Fig. A9: Additional chest xray spotlights.
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