
Implementation and Optimisations for Computing
Maximum Agreement Forests for Rooted

Multifurcating Trees
Ben Lee

Faculty of Computer Science
Dalhousie University

Halifax, Canada
Ben.Lee@dal.ca

Chris Whidden
Faculty of Computer Science

Dalhousie University
Halifax, Canada
cwhidden@dal.ca

Abstract—We implement and optimise a fixed parameter
tractable (FPT) algorithm proposed by Whidden et al. (Al-
gorithmica, 2016) for computing maximum agreement forests
(MAFs) for pairs of multifurcating trees. The sizes of MAFs
give the subtree-prune-and-regraft (SPR) distance and has uses
in determining when and how often lateral gene transfer (LGT)
takes place in phylogenetic trees. We show the running time
based on synthetic data and confirm the optimisations speed up
the algorithm. The main motive for this algorithm is to study
LGT in antimicrobial resistant bacteria.

Index Terms—subtree-prune-regraft, phylogenetic trees, mul-
tifurcating, non-binary

INTRODUCTION

Lateral gene transfer (LGT) can rapidly spread antimicrobial
resistance (AMR) in pathogenic bacteria, making it difficult to
treat patients and requiring the expensive development of new
antibiotics [2]. One method of studying and identifying LGT
is to compare individual evolutionary gene trees to a reference
“species tree” and reconcile differences between the trees [5].
The publicly available rspr software1 computes such distances,
using the biologically informative subtree prune-and regraft
distance [3]. Computing maximum agreement forests (MAFs)
is one way of calculating the subtree prune and regraft (SPR)
distance [1]. However, the current implementation of rspr
relies on an assumption that the reference tree is binary, that
is, every node of the tree has at most two clear descendants.
it is necessary to relax this assumption to analyze large
AMR datasets of closely related bacteria, where the exact
order of descendants may be unclear. This uncertainty is
represented in the tree with nonbinary nodes. In this paper
we extended rspr to handle nonbinary-nonbinary comparisons,
by implementing a proposed algorithm from Whidden et al.
(Algorithmica, 2016) [6]. We then show a set of optimisations
that experimentally decrease the running time on synthetic
trees.

This project was funded by the Natural Sciences and Engineering Research
Council

1https://github.com/cwhidden/rspr

T1 F2

a1 am

ρ

ar ar

. . .

a1 a2

l

Bl

B1 B2 Br

Fig. 1. Figure of a sibling group on T1 (left) and relative nodes in a subtree
of Forest F2, created from previous cuts of T2 (right)

METHODS

This algorithm is based on finding MAFs because the size
of an MAF gives the SPR distance between two trees. In
order to compute an MAF, edges between nodes are cut until
each forest are identical, and the goal is to cut as few edges
as possible so the forests have maximum agreement. Let the
reference tree be denoted by T1 and the target tree denoted by
T2. The algorithm works by identifying sibling groups in T1,
where a sibling group is a set of leaves that share a parent, then
using the relative position of those siblings in T2 to identify
possible cuts that lead to an optimal solution. Proven in [6]
and shown in Fig. 1, there are four possible cuts that reduces
the distance by at least 1 while working on two siblings. These
cuts are: cutting the edge above a1, a2, expanding B1 out to
a single node and cutting that, and doing the same for B2

This algorithm is recursive with a fixed parameter k, starting
at 0 and increasing until the SPR distance is less than or equal
to k. This does not significantly increase the running time
because the algorithm is exponential on k [6].

As mentioned in [6], the naı̈ve implementation would sim-
ply recurse on the 4 different cuts. However, there may be
a case where in one branch edge ea is cut, then eb; then in
another branch edge eb is cut, then ea. These two branches
result in the same tree and it would be best to only go down
one of them. A set of special cases were proposed to reduce
recursive calls like this [6]. Cases 8.1-8.7 reduce the number
of recursive calls made by making a series of cuts all at once.



TABLE I
TEST PAIRS OF TREES WITH THE STATED SPR DISTANCE (DSPR) THAT CAN BE BROKEN INTO (CLUSTER COUNT) CLUSTERS. RUNNING TIME OF THE
NEW ALGORITHM IN SECONDS IS SHOWN USING BOTH OPTIMISATIONS OF THE SPECIAL CASES 7/8 AND CLUSTERING, JUST THE SPECIAL CASES, JUST

CLUSTERING OR NEITHER OPTIMISATION. IF THE ALGORITHM DID NOT FINISH IN 30 MINUTES IT IS LABELED N/A.

dSPR Cluster Count Special cases w/ cluster(s) Special cases w/o cluster(s) No Special cases w/ cluster(s) No special cases w/o cluster(s)
10 1 0.032 0.031 0.159 0.162
15 1 1.117 1.122 14.338 14.087
17 3 0.199 0.318 1.698 6.265
24 1 3.503 4.025 868.792 838.446
46 25 0.146 N/A 0.728 N/A

Cases 7.1-7.4 help prevent redundant branching by marking
an edge not to be cut in the next iteration. Similar cases
were implemented for binary trees [7] and were shown to
improve the running time by several orders of magnitude, and
we expect it to have the same effect on multifurcating trees.
The multifurcating cases are explained in detail in [6].

Another optimisation we implemented was cluster reduction
developed by Linz and Semple [4]. This involves finding
pairs of subtrees in T1 and T2 that have the same subset of
leaves but not necessarily the same branching. We can solve
these subtrees independently of the rest of the tree. Since
the algorithm is exponential on k, this can greatly decrease
the running time by solving many small trees with low SPR
distance instead of one large tree.

We made the following changes while porting the cur-
rent binary-nonbinary rspr software to support nonbinary-
nonbinary trees: 1. storing sibling groups, 2. finding lowest
common ancestors (LCAs) of sibling groups and 3. finding
identical sibling groups.

Firstly, in the binary implementation sibling pairs were
stored as a pair of pointers to nodes. Instead of storing the
siblings in a list, we save sibling groups by storing their parent.
This way a single pointer to a node is stored instead of an
entire list of pointers which saves storage and time.

Secondly, in order to determine which special case to
consider (7.1-7.4 and 8.1-8.7), the LCA of the sibling group
in T2 must be found. We find LCA’s in an efficient manner by
traversing upward from each node of the sibling group in T2.
First, each node in T2 is labeled with 0. Then we follow each
node of the sibling group to its relative in T2 and we traverse
up, adding 1 to that node’s label until a root is found. Then
an LCA can be described as a node with a label value greater
than or equal to 2, and all children with labels 0 or 1.

Thirdly, we implemented a way to find identical sibling
groups. Identical sibling groups are subsets of the sibling
group that share a parent in both T1 and T2. These are useful
to find because it means these nodes can be contracted into a
single node. Let twins be a pair of leaves, where one node is in
T1, one node is in T2, and the node in T2 represents the same
organism as the node in T1. These twins are maintained for
all leaves throughout the algorithm. We create a map with the
key as the parents in T2 and the values as a the list of children
that are the twins in T2. Each sibling in T1 is followed to its
twin in T2, if its parent is not in the map, it is added and the
value list adds this twin. If it is in the map then this twin is

appended into the list. After all the siblings are accounted for,
these lists contain disjoint subsets of the sibling group that
share a parent in T2. If a list only has one node, then it is not
part of an identical sibling group because it does not share a
parent with any other sibling in T2. If it has more than one
node then it is part of an identical sibling group.

With these three major changes, we were able to implement
the proposed nonbinary-nonbinary algorithm.

RESULTS

The following tests were run on a 2.3 GHz Dual-Core Intel
i5 with 8GB of RAM and running macOS 11.0.1 Big Sur
on a 2017 MacBook Pro. The code was compiled using clang
12.0.0 with optimisations -O2. Table I shows the running times
of test trees with different optimisations enabled. Trees were
made by generating a random tree with each branch containing
3 to 5 children.

From Table I, special cases 7 and 8 generally improved all
of the test’s running time. The most dramatic improvement
was the cluster reduction, where a tree with a dSPR of 46
was able to be computed in negligible time with the cluster
reduction. The cluster reduction understandably showed no
difference when there was only one cluster because that cluster
contains the whole trees.

Interesting to note from Table I is the 4th data point with
a SPR distance of 24. The special cases gave a speed up of
about 224 times. We expect to see similar or greater speed up
from these cases in larger trees with larger SPR distances.

CONCLUSIONS

In this paper we present the results of implementing the
proposed algorithm from Whidden et al. (Algorithmica, 2016)
to compute the SPR distance between a pair of nonbinary trees
[6]. We show that trees with an SPR distance of 46 can be
calculated in under a second if they have many clusters, and
trees with an SPR distance of 15 can be calculated in about a
second with the special cases optimisation. We also show that
the special cases can improve a tree with an SPR distance of
24 by approximately 224 times. In this project we created the
first implementation of an algorithm for computing the SPR
distance between two nonbinary trees.

FUTURE WORK

The next step for this project is to run the algorithm on real
phylogenetic trees of AMR bacteria from the ARETE database



(http://arete-amr.ca). We would also like to work with ARETE
researchers to analyse an AMR dataset using this algorithm.

The current software only shows the SPR distance, so
another future work is to add an option that shows what the
SPR operations were. Using the MAF calculated, it is possible
to find the sequence of SPRs in polynomial time [1].

We would also like to try other optimisations that are not
listed in [6], for example putting the sibling groups in a sorted
queue based on number of siblings or depth then working on
sibling groups in that order.

ACKNOWLEDGMENT

This project is supported by an NSERC Undergraduate
Student Research Award.

REFERENCES

[1] Bordewich, M., Semple, C. On the Computational Complexity of the
Rooted Subtree Prune and Regraft Distance. Ann. Comb. 8, 409–423
(2005). https://doi.org/10.1007/s00026-004-0229-z

[2] M. Gajdács, E. Urbán, A. Stájer, and Z. Baráth, “Antimicrobial Resis-
tance in the Context of the Sustainable Development Goals: A Brief
Review,” European Journal of Investigation in Health, Psychology and
Education, vol. 11, no. 1, pp. 71–82, Jan. 2021.

[3] Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing
evolutionary trees. Disc. Appl. Math. 71(1-3), 153–169 (1996)

[4] Linz,S., Semple,C.:Hybridization in nonbinary trees. IEEE/ACMTrans.
Comput. Biol. Bioinform. 6, 30–45 (2009)

[5] Ravenhall M, Škunca N, Lassalle F, Dessimoz C. ”Inferring horizontal
gene transfer”. PLoS Comput Biol. 2015;11(5):e1004095, 2015 May 28.
doi:10.1371/journal.pcbi.1004095

[6] Whidden, C., Beiko, R.G. & Zeh, N. Fixed-Parameter and
Approximation Algorithms for Maximum Agreement Forests
of Multifurcating Trees. Algorithmica 74, 1019–1054 (2016).
https://doi.org/10.1007/s00453-015-9983-z

[7] Whidden C., Beiko R.G., Zeh N. (2010) Fast FPT Algorithms
for Computing Rooted Agreement Forests: Theory and Experiments.
In: Festa P. (eds) Experimental Algorithms. SEA 2010. Lecture
Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-13193-6 13


