
ChunkSumm: Extending BERT for Long Document
Summarization

Aman Jaiswal
Faculty of Computer Science

Dalhousie University
Halifax, Canada

aman.jaiswal@dal.ca

Juan Ramirez-Orta
Faculty of Computer Science

Dalhousie University
Halifax, Canada

juan.ramirez.orta@dal.ca

Evangelos Milios
Faculty of Computer Science

Dalhousie University
Halifax, Canada
eem@cs.dal.ca

Abstract—In this abstract, we introduce ChunkSumm, a
method to produce extractive summaries for documents with
length well above the well-established 512 token limit for BERT.
We do so by chunking the input into blocks that have the
maximum length accepted by BERT and then producing token-
level predictions using a combination of the features produced
by BERT and 1D-Convolutional layers. Our method can handle
full documents with thousands of tokens on a single NVIDIA
A100 GPU with ease. We test our method on the TalkSumm
data set of extractive summaries of full academic papers and
obtain promising results.

Index Terms—extractive summarization, document-level natu-
ral language processing, pre-trained deep language models

I. INTRODUCTION

Inside Natural Language Processing (NLP), Automatic
Summarization is one of the oldest and most important tasks,
which has received continued attention since the creation of the
field in the late 50’s [1], mainly because of the ever-increasing
size of libraries since the advent of digital computers. The
objective of the Automatic Summarization task is, given a
document, to produce a shorter text with maximum informa-
tion content, fluency and coherence. The summarization task
can be classified into extractive and abstractive: in extractive
summarization, the summary is composed exclusively of pas-
sages present in the original document; while in abstractive
summarization, the summary can contain words that were not
present in the original document.

Since the creation of GPT [2], pre-trained deep language
models have revolutionized the field of NLP. Models like
BERT [3], RoBERTa [4] and GPT-3 [5] have shown impressive
generation and reasoning skills that have set new standards in
what language models based on neural networks can do. The
standard fine-tuning pipeline of the current state of the art in
NLP allows to leverage the long training on huge data sets
that these models had even in low-resource settings, resulting
in impressive results in basically all the tasks across NLP.

However, the main limitation when using these models
is their computational requirements: the immense amount of
memory and processing they need to be effective restricts their
usage when working at the document level and in low-resource
devices, like cellphones.

The compute resources for this project were provided by Compute Canada.

In this work, we propose a model that can perform token-
level extractive summarization on whole documents. Using a
BERT-like model as backbone and combining the features it
produces with 1-D Convolutional layers, it can produce fine-
grained summaries based on sentences and even passages on
standard hardware without sacrificing performance. Our model
has the following advantages:

• It can process whole documents while running on stan-
dard hardware.

• It produces extractive summaries at the token level, which
means that it can extract passages and even phrases from
the input that are relevant for the summary.

• It introduces a novel training method based on chunking
which can fine-tune pre-trained deep language models on
sequences that are well above their input limits.

II. CHUNKSUMM

The main idea of our method is to fine-tune BERT and
combine the features it produces with 1D-Convolutional layers
to produce token-level predictions for full documents. How-
ever, using this approach directly is computationally unfeasible
because full documents are sequences with thousands of
words, and training a model like this would need an immense
amount of both memory and documents with annotations for
every token. To overcome these limitations, we propose a
method composed of five steps, described in Figure 1.

A. Tokenization

The first step of our methodology is to transform the raw
text into tokens that BERT can understand. This is accom-
plished with the standard AutoTokenizer for BERT included
in the Transformers library [6], which can split documents of
arbitrary length into the sub-word units that BERT was trained
on and can also turn passages from them back into text.

B. Chunking, BERT Layers and Concatenation

The main contribution of our architecture is chunking the
input into segments that can be fitted into BERT. Normally, a
full document has thousands of words, so the standard length
limit of 512 is the main limitation of the documents that can
be processed with BERT. In our method, such a document

Input Text BERT Tokenizer Token Labels

Chunking

BERT Layers

Concatenation

1D-Convolutional
Layers

Softmax Layer Predicted Labels

Binary Cross
Entropy

Our Approach

Fig. 1. Overview of our proposed architecture. First, the text is tokenized
using the tokenizer included with BERT and the sentence-level labels are
propagated to obtain a label for every token. Then, the tokens are chunked into
blocks of 512 and processed using the Transformer layers from BERT. After
all the chunks have been processed, they are concatenated and processed with
1D-Convolutional layers. The last part of our architecture is a Softmax layer
that produces the token labels predicted by the model, which are compared
against the true labels using Binary Cross Entropy.

would be split into contiguous, disjoint blocks of length 512,
which can be fitted into BERT without problems.

Each one of the token chunks is then processed indepen-
dently using the backbone of our architecture, which is a
BERT-like model. There is no gradient propagation between
the chunks, which makes the training stable and compu-
tationally feasible. An interesting idea is to decide if the
backbone of the architecture should be fine-tuned or not: in our
experiments, we found it beneficial to initialize the weights of
the backbone by fine-tuning it with an auxiliary task, described
below.

Once the chunks has been processed with the backbone
model, they are concatenated together to recover the length of
the original sequence: in this way, our architecture computes
BERT-like features for each one of the tokens in the input
using a reasonable amount of computational power without
sacrificing performance. This process is shown in Figure 2.

C. Convolutional and Softmax Layers

Once the model has computed the features for each token
in the input, the features are combined together using a
stack of 1D-Convolutional and Activation layers that are then
fed into a Softmax classifier on top of each token. The
convolutional layers have a number of hyperparameters, but
in our experiments, we found that the kernel size is the one
that had the biggest impact during training.

The predictions produced by the Softmax layer can be then
compared with the reference token labels via Cross-Entropy
and optimized using standard Gradient Descent methods.

III. EXPERIMENTAL SETUP

A. Data

The TalkSumm [7] data set is composed of 1,651 academic
papers, each one with its extractive summary, which was

computed using the fitted model from the paper. The data set is
tokenized at the sentence level, which means that the extractive
summary for each one of the documents is composed of whole
sentences. The papers themselves are not shared in the data
set, due to copyright reasons. Instead, they share the URLs
where the papers can be downloaded, assuming that one has
access to them. Then, the way they recommend to extract the
text and sentences from the papers is using science-parse [8],
which is a neural-based model for extracting and parsing text
from scientific papers by AllenAI. We randomly split the data
set into three disjoint subsets, shown in Table I.

TABLE I
NUMBER OF EXAMPLES PER DATA SET

Data Set Papers Sentences

Train 1,001 225,584
Development 150 33,702
Test 500 113,278

B. Training

The proposed architecture can be trained end-to-end using
two strategies: using whole sentences or using whole papers.
These strategies, which are defined by the data units presented
to the model during training, specify the number of data points
observed and the potential number of optimization steps.

In sentence-level training, the objective is to predict if the
tokens of a given sentence should be included in the summary
or not, which is optimized using the Binary Cross Entropy
between the predictions and the token labels of independent
sentences of the paper. The main idea behind this strategy is
that the words of the sentences that are included in summary
are very different from the ones that are left out, even when
just looking at isolated sentences. The main advantage of
this is to bypass the computational overhead of chunking the
complete document (which can contain thousands of tokens),
but it has the drawback that the order of sentences in not
preserved, which can make the task impossible to solve for
some sentences.

On the other hand, in paper-level training, the objective is to
processes the complete document while preserving the order
of occurrence and outline of the document. This strategy is
much more expensive than training at the sentence-level, but
it takes into account the full context for every token selected
in the summary. We hypothesize that this mode of training
should benefit summarization tasks which require analyzing
the whole structure of long, full documents. For example,
when summarizing an academic paper, important extractions
can be found in the abstract and conclusion, which are very
far away from each other in the input sequence.

C. Experimental Results

We experimented with the four different variations derived
from the mode of training and the state of backbone model,
which could be either frozen or trainable. The number of
trainable parameters for each model are shown in Table II.

Encoder Layer 1

Encoder Layer n

Encoder Layer 3

Encoder Layer 2
\

Average encodings of last 5 encoder layers

t1 t2 t511 t512. t510

Token Embeddings 1

en

e2

e1

en

e2

e1

BERT Token Extractor

Long Text

Chunk 1 Output

Obtain token encodings for each chunk
Pre-trained BERT

Concatenate tokens encoding chunks

Token Embeddings N

director andrew davis reworks his fugitive formula and the results are about
as exciting as his last film-- the dreadful comedy steal big , steal little-- was
funny . keanu " i 'd rather play music than play another action hero " reeves
is the grad student on the run , who , along with his superfluous sidekick (
rachel weisz) , has been framed for a sabotaged science experiment that
vaporized eight chicago city blocks . (the mushroom - cloud explosion is a

knock - out and easily the best part of the movie . or , as one audience
member succinctly summed it up : " whoa . ") false information implicates
their involvement and boy and girl are soon on the run , fleeing over open

drawbridges , across icy lakes , and through the corridors of power at a top -
secret , underground energy facility . aiding and abetting is the team 's
shady mentor , played in an excellent - but - so- what performance by

morgan freeman . (brit brian cox is also about , as the behind - the - scenes
bad guy . he has some fun fiddling with a southern accent .) unfunny ,

overscored , and without a single shred of suspense , chain reaction is *
the * summer movie to walk out on . if you make it to the end , a mess of

cross - cutting involving another imminent explosion , you 'll hear somebody
say " i guess it 's time to go . " heed that warning

Chunk N Output

Chunk 2 Output

Fig. 2. Overview of our chunking methodology. First, the complete input is tokenized using the BERT tokenizer and split into chunks of size 512 tokens.
Sequentially, The input chunks are processed by BERT to produce token embeddings for each chunk. Here, we utilize the average token embeddings of the
last 5 layer of the BERT. Once every chunk is processed independently, they are concatenated over the token(time) dimension to produce the complete input
embedding matrix.

TABLE II
NUMBER OF TRAINABLE PARAMETERS

Model # Parameters
BERT Convolutions Total

ChunkSumm-Paper-Frozen – 19M 19M
ChunkSumm-Sentences-Frozen – 19M 19M
ChunkSumm-Paper 128M 19M 147M
ChunkSumm-Sentences 128M 19M 147M

The ROUGE-1, ROUGE-2, ROUGE-L and AUC scores
of all the models on the test set are shown in Table III.
In paper-level training, the summarization performance im-
proved significantly when the BERT parameters were fine-
tuned along with the convolution parameters. We also observed
that Sentence-level training can match the performance of
paper-level training without the need for fine-tuning the BERT
parameters. This suggests that we can obtain better summa-
rization performance while training 128M fewer parameter and
training with a strategy that uses significantly less memory.

TABLE III
RESULTS

Model R-1 R-2 R-L AUC

ChunkSumm-Paper-Frozen 0.02 0.00 0.02 0.89
ChunkSumm-Sentences-Frozen 0.48 0.31 0.47 0.78
ChunkSumm-Paper 0.45 0.26 0.42 0.89
ChunkSumm-Sentences 0.48 0.30 0.46 0.91

IV. CONCLUSION AND FUTURE WORK

Our results show that we can efficiently fine-tune BERT
for long-text summarization using chunking and convolutions.
Our method produces accurate token-level predictions for
the complete document even while training only on isolated
sentences.

For future work, we would like to explore more sophis-
ticated strategies of aggregating the token probabilities to
produce summaries.

REFERENCES

[1] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of Research and Development, vol. 2, no. 2, pp. 159–165, 1958.

[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving Language Understanding by Generative Pre-training,”
https://cdn.openai.com/research-covers/ language-unsupervised/
language understanding paper.pdf , 2018.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
arXiv preprint arXiv:1810.04805, 2018. [Online]. Available: https:
//arxiv.org/pdf/1810.04805.pdf

[4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019. [Online].
Available: https://arxiv.org/pdf/1907.11692.pdf

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, vol. 33. Curran Associates, Inc.,
2020, pp. 1877–1901. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[6] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-Art
Natural Language Processing,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demon-
strations. Online: Association for Computational Linguistics, Oct. 2020,
pp. 38–45.

[7] G. Lev, M. Shmueli-Scheuer, J. Herzig, A. Jerbi, and D. Konopnicki,
“TalkSumm: A dataset and scalable annotation method for scientific
paper summarization based on conference talks,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 2125–2131. [Online]. Available: https://www.aclweb.org/anthology/
P19-1204

[8] AllenAI, “Science parse,” GitHub repository, https://github.com/allenai/
science-parse, October 2019, visited on April 23, 2021.

