Towards the Use of Generative Machine Learning
for Synthesizer Patch Creation

Matthew Peachey
Graphics and Experiential Media Lab
Faculty of Computer Science, Dalhousie University
Halifax, Canada
peacheym@dal.ca

Abstract—Synthesizers are a unique type of musical instrument
that are capable of generating sounds in a very wide range of
timbres. Musicians will typically save the state of their synthe-
sizers into ‘“‘patches” when they discover sounds that they would
like to share or recall at a later time. This paper demonstrates
a work in progress for utilizing unsupervised Machine Learning
models such as Generative Adversarial Networks and Variational
Autoencoders can be used to generate completely new Synthesizer
patches. The results achieved in this work are promising and
suggest that applying these modern Machine Learning models to
this specific problem is both feasible and extendable.

I. INTRODUCTION

Synthesizers are powerful tools that allow musicians to
create a wide variety of sounds by tweaking adjustable
parameters. A typical workflow when making music with
synthesizers is to adjust several parameters until a desired
timbre (the quality of a sound [6]) is identified and save that
state of the instrument for later use. Machine Learning (ML)
techniques have been applied to synthesizers via projects such
as Wekinator [3] that enable users to use supervised ML for
creating mappings between control surfaces and synthesizers.
Furthermore, projects such as WaveNet and GanSynth [7, 2]
use ML to generate audio directly at the waveform level. This
paper presents a work in progress for the use of generative ML
models, namely Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) for generating and interpo-
lating between synthesizer patches.

The rest of this paper is structured as follows. A background
on digital synthesizers is presented along with the reasons for
selecting a specific synthesizer to use in this project. Next,
an overview of both GANs and VAEs is presented followed
by the specific methods used for our experiments. Finally, a
discussion of the results and future work for this project is
presented.

II. DIGITAL SYNTHESIS
A. Basic Components of Synthesis

Both analog and digital synthesizers are typically comprised
of the same fundamental building blocks. In subtractive syn-
thesis, which this paper primarily focuses on, oscillators are
used to generate signals in specific waveforms, filters are
used to remove certain frequencies from a signal, ADSR

Joseph Malloch
Graphics and Experiential Media Lab
Faculty of Computer Science, Dalhousie University
Halifax, Canada
jmalloch@dal.ca

envelopes are used to change signals over time (whether
it be related to amplitude, frequency or pitch) and other
synthesizer specific components are used to generate unique
and interesting timbres.

B. Synthesizer Patches

Synthesizer patches are simply snapshots of the synthe-
sizer’s state at a specific time. Many digital synthesizers allow
users to save patches in order to recall them at a later date or
share them with other musicians. Patches will typically aim
to capture a specific sound (whether it be a familiar one or
not) and for convenience sake will typically be named after
the sound or emotion that the patch aims to capture.

C. amSynth

There are countless synthesizers in both the analog and dig-
ital spaces. These range from commercial hardware products
such as the Roland Juno-60' to software plugins for digital
audio workstations such as Ableton Live®.

AmSynth® is an open-source subtractive synthesizer with
a list of features including dual oscillators, resonant filters,
preset bank and patch management, MIDI connectivity and
more.

amsynth: 20: NicePoly24 *

File Preset Config Utils Help Audio: ALSA @ 44100 MI
[F] BriansBank02 -~

20: NicePoly24 - N

Fig. 1: Screenshot of amSynth’s user interface

This synthesizer was selected as the subject of the experi-
ments presented in this paper due to its ease of use, lack of
clutter, and large collection (approximately 3000) of existing
patches. The latter was crucial as working with ML requires a

Uhttps://www.roland.com/ca/products/rc_juno-60/
Zhttps://www.ableton.com/en/shop/live/
3https://amsynth.github.io/

https://www.roland.com/ca/products/rc_juno-60/
https://www.ableton.com/en/shop/live/
https://amsynth.github.io/

sufficient amount of sample data and thus having an existing
set of patches removed the need to externally source these
ourselves.

III. GENERATIVE MACHINE LEARNING

Generative ML is a subset of unsupervised ML that aims
to discover distributions in a sample dataset and therefore be
able to generate new samples that could plausibly have come
from the original dataset. This generation of new examples is
what separates generative ML models from other unsupervised
methods that focus on clustering and other traditional unsu-
pervised tasks. The following sections give a brief overview
of two such generative models used in this project.

A. Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first pre-
sented by Ian Goodfellow in 2014 as a method for generating
new data based on sample datasets. GANs work by creat-
ing two complementary neural networks, a generator and a
discriminator [4]. In Figure 2 these two neural networks are
coloured yellow and purple respectively. These two neural
networks are trained as opponents attempting to fool one
another. More specifically, the generator attempts to create a
datapoint that could have plausibly come from the original
dataset and the discriminator attempts to determine whether
or not a datapoint is fake (generated) or real (belongs to the
original dataset). When both the generator and discriminator
are trained to their full potential, the generator is capable
of creating realistic data while the discriminator is forced to
simply guess whether or not a datapoint is real.

Discriminator

Generator M—T

Fig. 2: A basic GAN Architecture.

Real Data

B. Variational Autoencoders

Variational Autoencoders (VAEs) are another type of gen-
erative ML model. Rather than training opposing neural net-
works, VAEs aim to reduce the original feature space of a
dataset into a latent space, typically denoted as z, as shown in
Figure 3. This is done by using two inverted neural networks
to encode the original data into the latent space with the goal
of achieving a perfect reconstruction after decoding the data
from the same latent space. Once the encoder and decoder
have both been trained, a user is able to run inference on the
decoder with new latent vectors in order to generate previously
unseen data.

Real
Data

| » Encoder — »(Z — »| Decoder Reconstructed

Fig. 3: A standard VAE Architecture.

IV. METHODS

We conducted two experiments that used different genera-
tive ML models to create new synthesizer patches. Using both
GAN and VAE type architectures, we were able to produce
interesting timbral results. The methods used to achieve this
are discussed in the following sections.

A. Data Processing

In order to make use of the presets included with amSynth,
we were required to parse each of the raw text files. Fur-
thermore, because some of the synthesizer parameters were
selectable values (rather than continuous ones) we also had
to convert these into one-hot encoded vectors in order for our
neural networks to train most effectively on these parameters
[5]. Finally, we also removed columns from the data-frame
that were associated to non-timbrally interesting parameters
such as “master volume” and “keyboard tracking”. The final
result was a dataset with 2586 datapoints, each of which is a
vector of length 82.

B. Model Architectures & Hyperparameters

The following sections discuss the specifics of the model
architectures and hyperparameters used in this project.

1) GAN Experiment: For the GAN trial, we utilized a
variation of vanilla GAN called Wasserstein GAN (W-GAN)
due to the additional training stability and meaningful loss
function that the architecture provides [I]. We created a
generator network that utilized a latent dimension of 32, three
hidden layers of the following dimensions:

o (1284, 2560ut)
. (256m, 5120ut)
° (512171, 10240ut)

and an output layer with a dimension of 82 as expected
for the preset size. The discriminator followed a similar
architecture, with an input layer that accepted 82 inputs, three
hidden layers, and an output layer with a single output node
that reports whether or not the network believes a datapoint to
be real or fake. This experiment used the RMSprop optimizer
with a learning rate of 0.00005 for 300 epochs with a batch
size of 64.

2) VAE Experiment: For the VAE trial, we utilized a
minimal VAE with two hidden layers and a latent space with
size z = 16. The layers used in the encoder network were
(1641, 32,ut) and (32;y,, 82,y:) respectively. For the decoder
network, the same layers were used in reverse order. This
experiment used the Adam optimizer and was trained for 50
epochs with a batch size of 32.

V. RESULTS
A. Model Statistics

Figure 4 and Figure 5 show the loss curves for the GAN and
VAE architectures respectively. Note that the GAN’s generator
and discriminator losses do tend towards convergence after
approximately 6000 training examples. Similarly, the loss
associated with the VAE reaches an near minimum after
training on approximately 1700 examples.

Training Loss

— Gloss
D Loss

0 500 1000 1500 2000 2500
Training Examples

Fig. 4: W-GAN Loss

Training Loss

4000
3500
£ 3000

2500

2000

0 250 500 750 1000 1250 1500 1750
Training Examples

Fig. 5: VAE Loss

B. Discovered Timbres

While the loss and accuracy of ML models are important
metrics for success, they do not tell the full story when
reconstructing synthesizer patches based on inference of the
models. In order to qualitatively asses the results, the patches
must be played through the synthesizer and be evaluated
timbrally. We discovered that while certain patches did results
in timbres that were musically pleasing, many of the patches
did not. Some of the main issues were that attack times and
LFO amounts (two important factors for timbral qualities [8])
were higher than would typically be expected, resulting in
sounds that were saturated with a tremolo effect (in this case
where the sound oscillated between high volumes and low
volumes resulting in an unsatisfactory sound).

C. Source Code & Audio Samples

The full source code associated with this paper is available
in this GitHub repository which allows the models to be
trained and utilized. Audio samples of the generated patches
are also available at that link.

VI. FUTURE WORK

This paper presents experimental results for using VAE and
GAN architectures for generating new synthesizer patches.
Future work for this project includes refining the network
architectures and hyperparameters for the presented methods
in hopes of achieving better timbral results.

A. Synthesizer Selections

An interesting future work will be to see how well these
techniques apply to other synthesizers, whether they be sub-
tractive like the one used in this paper, or follow other
paradigms such as granular synthesis, additive synthesis, etc.

Additionally, exploring synthesizers that are both much
simpler in parameter space as well as much more complex
with hundreds of tweakable parameters are both interesting
research questions to be asked in the future.

B. Dataset Filtering

We know that machine learning models are only as good
as the data upon which they are trained. As mentioned in the
discussion about timbral qualities of the generated preset, the
patches were very biased to high attack times. One potential
cause for this is the dataset having patches meant to simulate
“helicopter” tones with long attack times (up to the maximum
of 15 seconds). By restricting the initial dataset to not include
any presets with attack times over 1 second, we suggest
that better results may be achieved when training generative
models. This notion may also apply to other parameters that
approach their maximum values, suggesting the need for
additional research.

REFERENCES

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein GAN. 2017. porL: 10.48550/ARXIV.1701.
07875.

[2] Jesse Engel et al. “Gansynth: Adversarial neural audio
synthesis”. In: arXiv preprint arXiv:1902.08710 (2019).

[3] Rebecca Fiebrink, Daniel Trueman, Perry R Cook, et al.
“A meta-instrument for interactive, on-the-fly machine
learning”. In: Proc. NIME. 2009.

[4] Tan J. Goodfellow et al. Generative Adversarial Net-
works. 2014. por: 10.48550/ARXIV.1406.2661.

[5] Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. “A
comparative study of categorical variable encoding tech-
niques for neural network classifiers”. In: International
Jjournal of computer applications 175.4 (2017), pp. 7-9.

[6] Jean-Claude Risset and David L. Wessel. “Exploration of
Timbre by Analysis and Synthesis”. In: The Psychology
of Music (Second Edition). Ed. by Diana Deutsch. Second
Edition. Cognition and Perception. San Diego: Academic
Press, 1999, pp. 113-169. 1SBN: 978-0-12-213564-4.

[7] Aédron Van Den Oord et al. “WaveNet: A generative
model for raw audio.” In: SSW 125 (2016), p. 2.

[8] Bin Wu, Andrew Horner, and Chung Lee. “Musical
timbre and emotion: The identification of salient timbral
features in sustained musical instrument tones equalized
in attack time and spectral centroid”. In: ICMC. 2014.

https://github.com/peacheym/DCSI2022
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1406.2661

	Introduction
	Digital Synthesis
	Basic Components of Synthesis
	Synthesizer Patches
	amSynth

	Generative Machine Learning
	Generative Adversarial Networks
	Variational Autoencoders

	Methods
	Data Processing
	Model Architectures & Hyperparameters
	GAN Experiment
	VAE Experiment

	Results
	Model Statistics
	Discovered Timbres
	Source Code & Audio Samples

	Future Work
	Synthesizer Selections
	Dataset Filtering

