
KATKA: A KRAKEN-like tool
with k given at query time

1st Travis Gagie
Faculty of Computer Science

Dalhousie University
Halifax, Canada

travis.gagie@dal.ca

2nd Sana Kashgouli
Faculty of Computer Science

Dalhousie University
Halifax, Canada

sana.kashgouli@dal.ca

3rd Ben Langmead
Department of Computer Science

Johns Hopkins University
Baltimore, USA

blangme2@jhu.edu

Abstract—We describe a new tool, KATKA, that stores a
phylogenetic tree T such that later, given a pattern P and
an integer k, it can quickly return the root of the smallest
subtree of T containing all the genomes in which the k-mer
P [i..i+ k − 1] occurs, for 1 ≤ i ≤ m− k + 1. This is similar to
KRAKEN’s functionality but with k given at query time instead
of at construction time.

Index Terms—metagenomics, taxonomic classification, phylo-
genetic trees, lowest common ancestor, LZ77-index

I. INTRODUCTION

KRAKEN [9], [10] is a popular tool that addresses the basic
problem of determining where a fragment of DNA occurs in
the Tree of Life, which arises for every sequencing read in a
metagenomic dataset. KRAKEN takes a phylogenetic tree T
and an integer k and stores T such that later, given a pattern
P , it can quickly return the root of the smallest subtree of T
containing all the genomes in which the k-mer P [i..i+k− 1]
occurs, for 1 ≤ i ≤ m− k+1. For example, if T is the small
phylogenetic tree shown in Figure 1, k = 3, and P = TAGACA,
then KRAKEN returns

• 8 for TAG (which occurs in GATTAGAT and
GATTAGATA),

• 6 for AGA (which occurs in AGATACAT, GATTAGAT and
GATTAGATA),

• NULL for GAC (which does not occur in T),
• 2 for ACA (which occurs in GATTACAT, AGATACAT and
GATACAT).

Notice that not all the genomes in the subtree returned for
P [i..i+k] need contain it: AGA does not occur in GATTACAT
or GATACAT.

KRAKEN is widely used in metagenomic analyses, espe-
cially taxonomic classification, but there are some application
for which we would rather give k at query time instead of
at construction time. In this paper we describe a new tool,
KATKA, which allows this. We are still optimizing and testing
KATKA and will report experimental results in the full version
of this paper.

II. DESIGN

To simplify our presentation, in this paper we assume T
is binary (although our approach generalizes to higher-degree
trees). KATKA consists of three main components:

4 9G
A
T
T
A
C
A
T

A
G
A
T
A
C
A
T

G
A
T
A
C
A
T

G
A
T
T
A
G
A
T

G
A
T
T
A
G
A
T
A

1

2

3 5

6

7

8

Fig. 1. A small phylogenetic tree.

• a modified LZ77-index [4] for the concatenation of the
genomes in T , in the order they appear from left to right
in T and separated by copies of a special character $;

• a modified LZ77-index for the reverse of that concatena-
tion;

• a lowest common ancestor (LCA) data structure for T .

Given P [1..m] and k, we use the first and second indexes
to find the leftmost and rightmost genomes in T , respectively,
that contain the k-mer P [i..i+k−1], for 1 ≤ i ≤ m−k+1; we
then use the LCA data structure to find the lowest common
ancestor of those two genomes. Since the two indexes are
symmetric and the LCA data structure takes only about 2 bits
per vertex in T and has constant query time, we describe only
the first index.

To build the index for the concatenation, we compute its
LZ77 parse and consider the phrases and co-lexicographically
sort the set of their maximal non-empty suffixes not containing
$, and consider the suffixes of the concatenation starting
at phrase boundaries and lexicographically sort the set of
their maximal prefixes not contain $ (including the empty
string ε after the last phrase boundary). We discard any of

-
-
-
-
-
-
-
-
A

-
-
-
-
-
-
-
T
A

-
-
-
-
-
-
A
T
A

G
A
T
T
A
G
A
T
A

-
-
-
-
-
-
-
-
C

-
-
-
-
-
-
-
-
G

-
-
-
-
-
-
-
A
G

-
-
-
-
-
-
-
-
T

-
-
-
-
-
G
A
T
T

9 ε
7 AGAT

1 AT
5 3 ATACAT
1 ATTACAT

1 3 CAT
1 TACAT

1 TTACAT

Fig. 2. The grid we build for the concatenation in our example.

those maximal prefixes that do not occur starting at a phrase
boundary and immediately preceded by one of those maximal
suffixes.

For our example, the concatenation is

GATTACAT$AGATACAT$GATACAT$GATTAGAT$GATTAGATA ,

its LZ77 parse is

G A T TA C AT$ AG ATA CAT$G
ATACAT$GATT AGAT$ GATTAGATA .

the co-lexicographically sorted set of maximal suffixes is

A, TA, ATA, GATTAGATA, C, G, AG, T, GATT ,

and the lexicographically sorted set of maximal prefixes is

ε, AGAT, AGATACAT, AT, ATACAT, ATTACAT, CAT,
GATTACAT, GATTAGATA, TACAT, TTACAT,

but we discard GATTACAT, AGATACAT and GATTAGATA
because they do not occur starting at a phrase boundary
immediately preceded by one of the maximal suffixes.

We build a grid with the number ℓ at position (x, y) if the
genome at the ℓth vertex from the left in T is the first one
in which there is a phrase boundary immediately preceded
by the co-lexicographically xth of the maximal suffixes and
immediately followed by the lexicographically yth of the
maximal prefixes. Notice this grid will be of size at most z×z
with at most z numbers on it, where z is the number of phrases
in the LZ77 parse of the concatenation. Figure 2 shows the
grid for our example.

We store data structures such that given strings α and
β, we can quickly find the minimum number in the box
[x1, x2] × [y1, y2] on the grid, where [x1, x2] is the co-
lexicographic range of the maximal suffixes ending with α
and [y1, y2] is the lexicographic range of the maximal prefixes
starting with β. (For the index for the reversed concatenation,
we find the maximum in the query box.) In our example, if
α = G and β = AT, then we should find 1.

For example, we can store Patricia trees for the compact
tries for the reversed maximal suffixes and the maximal suf-
fixes, together with a data structure supporting fast sequential
access to the concatenation starting at any phrase boundary.
In the literature (see [5] and references therein), the latter
is usually an augmented straight-line program (SLP) for the
concatenation, but if the genomes in T are similar enough then
it could probably be simply a VCF file. (We note that we can
reuse the access data structure for the index for the reversed
concatenation, augmented to support fast sequential access
also at phrase boundaries in the reverse of the concatenation.)
Figure 3 shows the compact tries for our example, with each
black leaf indicating that one of the strings in the set ended
at the parent of that leaf.

Nekrich [8] recently showed how to store the grid in O(z)
space and support 2-dimensional range-minimum queries in
O(logϵ z) time, for any constant ϵ > 0, but we are not aware
of any implementation yet. In our preliminary experiments,
we have simply been storing a map that takes a non-empty
path label from the first compact trie and a path label (which
may be empty) from the second compact trie, and returns the
minimum number in the box corresponding to the nodes with
those path labels. (We omit pairs of path labels for which
there is no number in the corresponding box.) Although this
could take Ω(z2) space in the worst case — when the compact
tries are very skewed — it seems to work reasonably well in
practice.

Figure 4 shows a grid representing the map for our example.
In Figure 2, the box for the co-lexicographic range of maximal
suffixes ending with G and the lexicographic range of maximal
prefixes starting with AT contains a 1, a 3 and a 5, so for G and
AT we store min(1, 3, 5) = 1 in our map. This reduces a 2-
dimensional range query to a lookup, at the cost of increasing
the space in practice by a factor something like the average
depth of the leaves in the compact tries.

Summing up, we store Patricia trees for the compact tries
for the reversed maximal suffixes and the maximal prefixes, an
SLP or VCF file or some other data structure supporting fast
sequential access to the concatenation starting at the phrase
boundaries), and a map from pairs of path labels in the
compact tries to the minimum numbers in the corresponding
boxes.

III. QUERIES

Given a pattern P [1..m] and an integer k, for every substring
P [i..j] of P with length at most k, we find and verify the locus
for the reverse of P [i..j] in the compact trie for the reversed
maximal suffixes, and the locus for P [i..j] in the compact
trie for the maximal prefixes. By combining the searches for
P [i], P [i..i+1], . . . , P [i..i+k−1], we make a total of O(m)
descents in the Patricia trees, each to a string-depth of at most
k; we extract O(m) substrings from the concatenation, each
of length at most k and starting at a phrase boundary, to verify
the loci. With care, this takes a total of O(km) time in the
worst case. When searching standard LZ77-indexes in practice,
however, “queries often die in the Patricia trees” [7] — because

Fig. 3. The compact tries for the concatenation in our example.

of mismatches between characters in the pattern and the first
characters in edge labels — which speeds up queries.

For each k-mer P [i..i+ k − 1] in P and each way to split
P [i..i + k − 1] into a non-empty prefix P [i..j] and a suffix
P [j+1..i+k−1], we look up in the map the minimum number
in the box for α = P [i..j] and β = P [j+1..i+ k− 1], which
takes constant time because we already know the loci for the
reverse of P [i..j] and for P [j+1..i+k−1]. (We can either hash
the substrings or encode them with their loci.) By the definition
of the LZ77 parse, the first occurrence of P [i..i+k−1] in the
concatenation crosses or ends at a phrase boundary. It follows
that, by taking the minimum of the minima we find with the
map, in O(k) time we find the leftmost genome in T that

-
-
-
-
-
-
-
-
A

-
-
-
-
-
-
-
T
A

-
-
-
-
-
-
A
T
A

G
A
T
T
A
G
A
T
A

-
-
-
-
-
-
-
-
C

-
-
-
-
-
-
-
-
G

-
-
-
-
-
-
-
A
G

-
-
-
-
-
-
-
-
T

-
-
-
-
-
G
A
T
T

1 1 3 9 1 1 3 1 7 ε
1 1 3 7 7 A

7 7 AGAT
1 1 3 AT

3 3 ATACAT
1 ATTACAT

1 1 3 CAT
1 1 T

1 TACAT
1 TTACAT

Fig. 4. A grid representing the map we store for our example. For each non-
empty path label in the first compact trie and each path label in the second
one, we store the minimum number in the corresponding box on the grid in
Figure 2.

contains P [i..i + k − 1]. Repeating this for every value of i
also takes O(km) time.

By storing symmetric data structures for the reverse of the
concatenation and querying them, we can find the rightmost
genome in T that contains P [i..i+k−1], for 1 ≤ i ≤ m−k+1.
With the LCA data structure for T , we can find the lowest
common ancestor of the two genomes, which is the root of
the smallest subtree of T containing all the genomes in which
the k-mer P [i..i+ k − 1] occurs.

For our example, if P = TAGACA and k = 3, then we find
and verify the loci for

T, A, AT, G, GA, GAT, A, AG, AGA, C, CA, CAG, A, AC, ACA

in the compact trie for the reversed maximal suffixes, and the
loci for

A, AG, AGA, G, GA, GAC, A, AC, ACA, C, CA, A

in the compact trie for the maximal prefixes.
For P [1..3] = TAG, we look up the minimum number 7 in

the box for α = T and the locus β = AGAT for AG; since G
has no locus in the compact trie for the maximal prefixes and
GAT has no locus in the compact trie for the maximal reversed
suffixes, we correctly conclude that the leftmost genome in
T containing TAG is at vertex 7. A symmetric process with
the index for the reversed concatenation tells us the rightmost
genome in T containing TAG is at vertex 9, and then an LCA
query tells us that vertex 8 is the root of the smallest subtree
containing all the genomes in which TAG occurs.

As we noted in the introduction, we are still optimizing and
testing KATKA and will report experimental results in the full
version of this paper. For now, we sum up with the following
theorem (using Nekrich’s result to obtain good space bounds,
at the cost of increasing the time bound by a logϵ z factor):

Theorem 1. Given a phylogenetic tree T whose g genomes
have total length n, we can store T in O(z log n + g/ log n)
space, where z is the number of phrases in the LZ77 parse of
the concatenation of the genomes in T (separated by copies of
a special character), such that when given a pattern P [1..m]
and an integer k, for 1 ≤ i ≤ m− k+1 we can find the root
of the smallest subtree of T containing all genomes in which
the k-mer P [i..i+ k − 1] of P occurs, in O(km logϵ z) total
time.

Proof. The LCA data structure takes 2g+ o(g) bits, which is
O(g/ log n) words (assuming Ω(log n)-bit words). An SLP for
the concatenation with bookmarks permitting sequential access
with constant overhead from the phrase boundaries in the
parses of the concatenation and its reverse, takes O(z log n)
space. For the concatenation, the Patricia trees and the instance
of Nekrich’s 2-dimensional range-minimum data structure take
O(z) space; for the reverse of the concatenation, they take
space proportional to the number of phrases in its LZ77 parse,
which is O(z log n). In total, we use O(z log n + g/ log n)
space. As we have described, we make O(m) descents in
the Patricia trees, each to string-depth at most k, and extract
only O(m) substrings, each of length at most k, from the
concatenation and its reverse. The time is dominated by the
O(km) range-minimum queries, which take O(logϵ z) time
each.

IV. FUTURE WORK

In addition to optimizing and testing KATKA, we are
also investigating adapting results [1]–[3] about using LZ77-
indexes to find the longest common substring and the maximal
exact matches of P and the genomes in T , in order to find
their subtrees instead of the subtrees for k-mers. Finally, we
are investigating adapting results [6] using LZ77-indexes for
document-listing, in order to find the number of genomes in
T in which each k-mer of P occurs. It is easy to store a
small data structure that reports the number of genomes in the
smallest subtree for a k-mer, so we may be able to determine
what fraction contain that k-mer.

Acknowledgments

Many thanks to Nathaniel Brown, Younan Gao, Meng He,
Finlay Maguire and Gonzalo Navarro, for helpful discussions.

REFERENCES

[1] Paniz Abedin, Sahar Hooshmand, Arnab Ganguly, and Sharma V
Thankachan. The heaviest induced ancestors problem: Better data
structures and applications. Algorithmica, pages 1–18, 2022.

[2] Travis Gagie, Paweł Gawrychowski, and Yakov Nekrich. Heaviest
induced ancestors and longest common substrings. In Proc. CCCG, 2013.

[3] Younan Gao. Computing matching statistics on repetitive texts. In Proc.
DCC, 2022.

[4] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing
repetitive sequences. Theoretical Computer Science, 483:115–133, 2013.

[5] Gonzalo Navarro. Compact data structures: A practical approach.
Cambridge University Press, 2016.

[6] Gonzalo Navarro. Document listing on repetitive collections with guar-
anteed performance. Theoretical Computer Science, 772:58–72, 2019.

[7] Gonzalo Navarro. Personal communication.
[8] Yakov Nekrich. New data structures for orthogonal range reporting and

range minima queries. In Proc. SODA, 2021.

[9] Derrick E Wood, Jennifer Lu, and Ben Langmead. Improved metage-
nomic analysis with KRAKEN 2. Genome Biology, 20(1):1–13, 2019.

[10] Derrick E Wood and Steven L Salzberg. KRAKEN: ultrafast metage-
nomic sequence classification using exact alignments. Genome Biology,
15(3):1–12, 2014.

