

Sketching as a Strategy to Solve Problems in
Introductory Programming

Sophie Blouin
Faculty of Computer Science

Dalhousie University
Halifax, Canada

sophie.blouin@dal.ca

Brent Crane
Faculty of Computer Science

Dalhousie University
Halifax, Canada

brentcrane@dal.ca

Eric Poitras
Faculty of Computer Science

Dalhousie University
Halifax, Canada

eric.poitras@dal.ca

I. ABSTRACT
 While prior work has investigated the role of sketching in
reading code, the role of flow diagrams has received little
attention. In this paper we contribute a technique for
sketching flow diagram that serves as a strategy for novice
programmers to improve performance in solving procedural
programming problems. We then analyze sketches in terms
of the degree of ambiguity in pseudocode descriptions of
operations, and any description of changes in data resulting
from operations. Sketches were collected in the context of an
introductory programming course throughout a semester
where students had the opportunity to receive formative
feedback on their designs prior to implementing code for
course assignments. Our results indicate that whilst novices
who sketched flow diagrams were found to perform better,
these sketches were seldom completed and did not
necessarily lead to efforts to mentally simulate program
execution. We discuss the implications of these findings for
instruction to promote strategic knowledge in introductory
programming.

II. INTRODUCTION
 The term “sketching” has been defined as the act of
creating illustrations or diagrams, typically using pen and
paper, while solving programming problems [1]. Over the last
twenty years, researchers in computing education have
established that sketching contributes to better performance
when students solve code reading and understanding
problems. “Tracing” in this case refers to the act of recording
intermediate states to mentally simulate the execution of a
program [2]. Findings consistently show that students who
choose to create detailed and complete sketches while tracing
through code perform better on problems that require an
understanding of how a piece of code works, especially in
cases where the operations performed on data, as well as the
order of these operations, are more complex.

 Prior research has focused on sketching as a technique for
teaching code reading skills. Our work, however, examines
the use of sketching for facilitating cognitive processes used
for designing solutions to code writing problems. In this
study, a control flow diagram (see Figure 1) is defined as a
type of sketch depicting the operations that must be
performed on data in a program, and the order in which these
operations must occur. Techniques for creating control flow
diagrams include writing pseudocode statements and
explicitly acknowledging intermediate states that will occur
during program execution.

 Novice programmers often face difficulties in solving
programming problems [3]. To what extent do novices sketch
while designing solutions? Does sketching lead to improved
performance? We predict that sketching complete and
detailed flow diagrams contributes to better student
performance in code writing tasks. This is justified by two
design principle that differentiate between more and less
effective flow diagrams. The first of these principles is the
generativity principle, which states that including semantic
elements, rather than just syntactical ones, contributes to the
writing of more accurate solutions. The second is the
specificity principle, which is that solutions are more correct
when syntactical elements of flow diagrams are presented
unambiguously. Examples of this include specifying data
types and exact operations in writing.

Figure 1: An example flow diagram including pseudocode and
trace depictions of operations designed as a solution to a
programming problem.

III. METHOD

A. Study Design
 This study consists of the first round of a design-based
research project to guide the design, implementation, and
refinement of instruction for design skills in the context of
introductory programming [4]. Design-based research is a
methodological approach in the learning literature that
examines learning processes in authentic contexts through the
systematic design and study of instructional strategies and
tools. The design worksheets outline the steps involved in
designing a solution in terms of the following skills: (1) re-
read the problem prompt and take notes; (2) compare test case
examples; (3) create a novel test case example; (4) sketch a
diagram that describes data and control flow changes during
program execution; and (5) write pseudocode to describe
operations performed by the program on the data. These steps
are completed by students by completing the relevant sections
of the worksheet that are progressively faded throughout five
course assignments. The course instructor provided feedback
to worksheets for students to implement their solutions by
writing code. Pre-training was provided during the second
week of the course using a series of video-recorded
demonstrations to model how to engage in each skill.

B. Sample
 The participants in this study were undergraduate students
recruited from a single section of a CS1 introductory
programming course at Dalhousie University. This course is
typically offered to novice programmers who are
inexperienced with Java or learning Java as their first
programming language. A total of 18 students consented to
participate in the study voluntarily to earn additional course
credit and 5 of these students completed the demographic
survey. The median age category reported by the participants
was twenty or younger, and the sample was comprised of
40% male students.

C. Measures
 The dependent variables represent a percentage that
indicates how many times an error was observed, including
both compilation and runtime logical error types, when
observing edits made by a student to their solution from the
keystroke data recordings. To answer the research questions,
we first examined the relationship between compilation
errors and the percentage of syntactic elements made explicit
in the flow diagram when observing pseudocode statements
as the first independent variable. The second research
question was addressed by examining the relationship of
logical runtime errors with the presence or absence of traces
in the operations depicted in the flow diagram as a second
independent variable.

IV. RESULTS
 The key claims warranted based on our findings can be
listed as follows: (1) students seldom sketch when solving
code writing problems in the context of introductory
programming; (2) sketches often include specific,
unambiguous descriptions of operations; and (3) sketches

may not necessarily induce efforts to mentally simulate
operations by tracing intermediate values during program
execution. For the purposes of reporting descriptive statistics,
students are referred to by pseudonyms in commenting on
specific cases.

A. Students seldom sketch flow diagrams
 Despite the opportunity to plan a solution to a
programming problem and receiving formative feedback on
their own design, it was found that very few students sketched
while writing code, with only 3% of students in the course
submitting design worksheets. This finding is consistent with
prior research that examined sketches made while solving
code writing problems during exams, which are limited to re-
writing code snippets or writing notes about intended
functionality of the solution [5].

B. Sketches often describe operations in a specific manner
 Overall, 81% of elements in pseudocode statements
included in student flow diagrams were mentioned explicitly.
Although Logan wrote the least ambiguous description of
operations with 96% of elements identified across each
problem of the assignment, Ezra only mentioned 40% of
elements by omitting descriptions of common operations
such as print statements. A significant linear regression
equation was found (F(1, 35) = 4.37, p < .05, with an R2 of
11.09%). The percentage of correctness for edits made while
writing syntactic statements increased by 33.81% when the
pseudocode described an operation in an unambiguous
manner, t(35) = 2.09, p < .05 (95% CI .97%, 66.6%).

C. Sketches may not elicit tracing the results of operations
 These sketching effects are attributed to offloading verbal
information to a pictorial medium while sketching, therefore
student efforts to trace during the forethought phase reduces
the likelihood of logic errors (i.e., generative principle).
Additionally, efforts taken to write unambiguous descriptions
of operations reduces the likelihood of compilation errors
(i.e., specificity principle). However, given the limitations of
our sample size and design, we cannot conclusively support
our claim that this led to better performance in implementing
solutions. Our presentation will elaborate further on the
implications for future research and limitations to the validity
and generalizability of these findings.

V. CONCLUSION
 These sketching effects are attributed to offloading verbal
information to a pictorial medium while sketching, therefore
student efforts to trace during the forethought phase reduces
the likelihood of logic errors (i.e., generative principle).
Additionally, efforts taken to write unambiguous descriptions
of operations reduces the likelihood of compilation errors
(i.e., specificity principle). However, given the limitations of
our sample size and design, we cannot conclusively support
our claim that this led to better performance in implementing
solutions. Our presentation will elaborate further on the

implications for future research and limitations to the validity
and generalizability of these findings.

REFERENCES

[1] Cunningham, K., Ke, S., Guzdial, M., & Ericson, B. (2019, July).
Novice rationales for sketching and tracing, and how they try to avoid
it. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 37-43).

[2] Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik,
H., ... & Ko, A. J. (2019). A theory of instruction for introductory
programming skills. Computer Science Education, 29(2-3), 205-253.

[3] Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM
Transactions on Computing Education (TOCE), 18(1), 1-24.

[4] Collins, A. (1992). Toward a design science of education. In New
directions in educational technology (pp. 15-22). Springer, Berlin,
Heidelberg.

[5] Cunningham, K., Blanchard, S., Ericson, B., & Guzdial, M. (2017,
August). Using tracing and sketching to solve programming problems:
replicating and extending an analysis of what students draw. In
Proceedings of the 2017 ACM Conference on International Computing
Education Research (pp. 164-172).

