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Abstract—We aim to implement a deep learning based clus-
tering algorithm (DeepDPM) for clustering fish images into
different classes. Unlike other unsupervised methods this is a
non-parametric method that does not require specifying of the
number of clusters at the beginning as the algorithm infers it
during the learning. We have replicated the results of DeepDPM
algorithm on the MNIST, Fashion-MNIST, USPS, STL10, and
ImageNet datasets as showcased by them. We now plan to im-
plement the algorithm on the Fish4-Knowledge dataset consisting
of unlabelled fish images of 23 different species in order to cluster
rare fish group. This work will help enable automated monitoring
and detection of unknown species of fish around commercial
infrastructure.

Index Terms—DeepDPM, upsupervised classification, EM,
SCAN, split-merge, feature-extraction

I. INTRODUCTION

Monitoring the movement of fish is essential for number of
reasons from maintaining a well balanced marine ecosystem
and to estimating the fish stock present in an area [1]. Most
of the observation of fish involves a large number of time-
consuming manual effort by experts. There has been some
promising work done by applying machine learning techniques
to detect and classify fish by species. For instance, Knausgård
et al has developed a deep learning system [9] to detect
temperate fish, while Shafait et al on the other hand has
developed a system [11] which identifies and counts fish
from videos captured in uncontrolled underwater environment.
However, this still requires large amounts of training data
labeled by experts. Moreover, with such a wide variety of
fish present it is not always possible to keep a track of them
without active human involvement. This consumes a lot of
time and resource which can be instead put to a better use.

To address this issue unsupervised clustering can be applied
which automatically groups similar species of fish together.
To monitor the underwater fish, Innovasea has developed a
deep learning based system [8] which automatically counts
and classifies the fish by combining the video and sonar data.
This has been deployed at White Rock hydroelectric dam and
is being tested [3]. Despite it being automated, the trick in
this is that system needs to be taught to recognize the fish
caught on camera as salmon or trout, red fish or blue fish [2].
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With the parameterized models, there is some assumption that
is made on the data. While, non-parametric methods are a set
of algorithms that do not make any prior assumptions about
the mapping function of training data. In case of clustering,
the value of K (approximate number of clusters) should be
provided by the user, and there is always a question of what
is the right value of K. If the K value is not approximated
correctly, it may not always result in a optimal number of
clusters. One way to deal with this is running the clustering
algorithm multiple times with different set of K values and
choosing the one which gives the best results. However, this
has several drawbacks which makes it difficult to apply in
practice. The primary one being, it is not feasible to run the
algorithm multiple times on large datasets particularly in Deep
Learning as it not feasible to train with multiple different
number of clusters it is computationally expensive to train
and consumes a lot of energy which in turn causes a negative
impact on the environment, moreover it cannot be scaled
. Here is where non-parametric algorithms like DeepDPM
[10] proposed by Ronen et al come into play, being a non-
parametric model it does not require for the user to mention
the K value, the model estimates it by changing the K value
using split-merges of clusters. It also makes use of a novel
inference for Expectation-Maximization (EM). This algorithm
is ideal for our use-case as it scales to large datasets and it
can also handle imbalance in dataset. In this paper, we plan
to implement the DeepDPM algorithm and test it on the real-
world fish dataset to see how well the model would be able
to identify different classes of unlabelled fish without much
manual intervention.

II. METHODS

DeepDPM algorithm can be looked as a DPM (Dirichlet
Process of Mixture) inference algorithm. The mixture model
is a GMM (Gaussian Mixture Model) and can be perceived
containing infinitely-many Gaussians.

p (x | (µk,Σk, πk)
∞
k=1) =

∞∑
k=1

πkN (x;µk,Σk) (1)

where N (x;µk,Σk) is a Gaussian probability density
function (pdf) (of mean µk ∈ Rd and a d-by- d covariance ma-



trix Σk ) evaluated at x ∈ Rd, πk > 0∀k, and
∑∞

k=1 πk = 1.
Let θk = (µk,Σk) denote the parameters of Gaussian k.
Note the distinction between component k (namely, the k-
th Gaussian, identified with its parameter, θk ) and cluster k.
The components, θ = (θk)

∞
k=1, and weights, π = (πk)

∞
k=1,

are assumed to be drawn (independently) from their own prior
distributions: the weights, π, are drawn using the Griffiths-
Engen-McCloskey stick-breaking process (GEM) [51] with a
concentration parameter α > 0, while the parameters, (θk)

∞
k=1,

are independent and identically-distributed (i.i.d.) draws from
their prior p (θk), typically a Normal-Inverse Wishart (NIW)
distribution. While there are infinitely-many components, there
are still finitely-many clusters as the latent random variable K
is bounded above by N . The DeepDPM algorithm primarly
contains two steps which feature extraction and clustering.

In feature extraction there are two ways of doing it: an
end-to-end approach in which the features and clustering are
learned simultaneously, and a two-step approach in which
clustering is performed on pre-computed latent features. For
the later method, feature extraction of SCAN [12] is used.

The clustering part of algorithm uses split-merge as inspired
[3] to change the K value where cluster has a subcluster
pair associated with it. It has two primary parts, the first
is clustering net, and the second contains K subclustering
nets (one for each cluster k). During training split-merge
is used to change the K value as in [3]. As K changes,
the model architecture also changes including the last layer
of the clustering net. A new loss is used here by the EM
(Expectation Maximization) in the Bayesian GMM. Due to the
new amortized EM the prediction of points improve not only in
the current batch but also in the other batches. The smoothness
of the function caused by this also serves as an inductive
bias such that points which are close in the observation space
should have similar labels.

III. RESULTS

The experiments were conducted on both locally on 2.5
GHz Core Intel i5 7th Gen with 12GB of RAM and run-
ning Windows 10 operating system as well as on the Deep
Sense platform having a 2xp100 GPU with 20 Core IBM
Power8NVL 4.0GHz and running Redhat Enterprise 7.7 oper-
ating system. Table 1 shows the results that were reproduced
on both balanced and imbalanced datasets of MNIST [6],
Fashion-MNIST [13], USPS [7], STL10 [4], and ImageNet
[5].

The evaluations is done based on three common metrics:
clustering accuracy (ACC) which is defined as

ACC = max
m

(∑N
i=1 ⊮ (yi = m (zi))

N

)
(2)

where N is the number of data points, yi is the Ground-
Truth (GT) class label of data point i, zi is the predicted
cluster assignment according to the clustering algorithm under
consideration, ⊮(·) is the indicator function, and m is defined
by all possible one-to-one mappings between the predicted
class membership and the ground-truth one.

; Normalized Mutual Information (NMI) which is defined
by

NMI =
2× I(y; z)

H(y) +H(z)
(3)

where H(.) stands for entropy and I(.; .) denotes Mutual
Information (MI). One problem with this metric, however,
is that the MI term, which appears in the numerator, does
not penalize large cardinalities (i.e., over clustering). NMI
is not sensitive enough to over clustering. ; Adjusted Rand
Index (ARI) The Rand index (RI) quantifies the percentage of
”correct” decisions for each pair of data points. A decision
is correct if two examples either belong to the same GT
class and the same cluster assignment (a true positive, TP),
or being from two different GT classes and assigned to two
different clusters (a true negative, TN). Similarly, clustering
errors are false positives (FP) and false negatives (FN). Then
RI is computed by:

RI =
TP + TN

TP + TN + FP + FN
. (4)

The ARI measure is the corrected-for-chance version of the
Rand index. Given a set S of N elements, and two groupings
or partitions (e.g. y and z ) of these elements, the overlap
between y and z can be summarized in a contingency table
[ckl] where each entry ckl denotes the number of objects in
common between yk and zk : ckl = |yk ∩ zk|. Let ak be
the sum (f each row, meaning, ak =

∑
l ckl, and bk the sum

of each column, i.e. bk =
∑

k ckl. The ARI measure is then
calculated by:
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The higher values in them the better. (5)
From Table 1, we see that the algorithm was able to

infer the value of K fairly well for all the datasets. There
were cases when it wasn’t able to get the exact K value for
example in USPS and ImageNet but it was right in the ballpark
zone as conducted in the previous experiments. The model
underestimated the K value in the case of USPS dataset while
of ImageNet dataset the K value was overestimated. If we train
the model longer time with more number of epochs for USPS
dataset, the model might have arrived at the right value of K.
The accuracy score along with the other evaluation metrics
meet the expectations.

Datasets Used Evaluation Metrics
NMI ARI acc Paperacc K

MNIST 0.941 0.953 0.9787 0.98 10
MNIST-imbalanced 0.941 0.953 0.978 0.98 10
Fashion-MNIST 0.687 0.534 0.663 0.62 10
Fashion-MNIST-imb 0.670 0.515 0.612 0.61 10
USPS 0.826 0.70137 0.727 0.89 7
USPSimbalanced 0.864 0.807 0.809 0.94 8
STL10 0.768 0.670 0.832 0.85 10
ImageNet 0.736 0.515 0.645 0.66 52

Table 1. Results obtained from replicating the DeepDPM
algorithm on different datasets as mentioned by the author.



Datasets Used Train samples Val samples Data dimension GT K
MNIST [6] 60,000 10,000 28 ×28 10
USPS [10] 7291 2007 16 ×16 10
Fashion-MNIST [13] 60,000 10,000 28 ×28 10
STL10 [4] 5,000 8,000 96 ×96× 3 10
ImageNet-50 [5] 64,274 2,500 224 ×224× 3 50

Table 2. Description of the datasets used

CONCLUSION

In this paper we presented the results conducted using
DeepDPM on MNIST, Fashion-MNIST, USPS, STL10, and
ImageNet datasets on both balanced and imbalanced to cluster
the data without the prior knowledge of the number of clusters.
We also created a script to view the cluster outputs by mapping
them back to their original class labels. This showed all the
misclassified images by the model in each cluster. Executing
the code was a challenge in itself because when we run the
clustering script locally without any GPU it would typically
take 6-8 hours to run with pretrained embeddings even on
a relatively small dataset like MNIST. So, we made use of
the DeepSense servers to run the model but again it had
package dependency issue initially. The end results were quite
promising as the model was successfully able to identify the
exact number of clusters most of the times without prior
mentioning of it. And it performed equally well for both
balanced and unbalanced datasets.

FUTURE WORK

DeepDPM has so far been tested only on the standard
datasets, but not real datasets of fish. The next step is to test
the algorithm on a dataset of real fish. We will be writing a
visualization code to visualize and analyze the results of the
clustering in order to verify the results and identify opportu-
nities to improve the clustering method. We will be running
the algorithm on Fish4Knowledge dataset which consists of
27,370 images of 23 species of fish captured from a live
video data. For this, we will be adapting the methods used to
train and test DeepDPM on ImageNet, including the feature
extraction and clustering steps. Finally, we will apply the
model in conjunction with partners at Innovasea to enable
unsupervised clustering at the White Rock Dam test site in
Nova Scotia, Canada. The clusters identified by DeepDPM will
be analyzed by fish experts to rapidly create a set of training
data used to train a low power YOLO model for continuous
detection and identification of fish. This work will help enable
rapid scaling of machine learning models for detecting and
classifying fish around commercial infrastructure by greatly
reducing the work required to identify and label fish species.
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